Polyspace® Bug Finder™
Reference

<

MATLAB&SIMULINK?

R2017b -) MathWorks:

X o)

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017

Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online Only

New for Version 1.0 (Release 2013b)
Revised for Version 1.1 (Release 2014a)
Revised for Version 1.2 (Release 2014b)
Revised for Version 1.3 (Release 2015a)
Revised for Version 2.0 (Release 2015b)
Rereleased for Version 1.3.1 (Release
2015aSP1)

Revised for Version 2.1 (Release 2016a)
Revised for Version 2.2 (Release 2016b)
Revised for Version 2.3 (Release 2017a)
Revised for Version 2.4 (Release 2017b)

Option Descriptions

1]

Polyspace Command-Line Options

2/

Defects

3

Functions, Properties, Classes, and Apps

4|

MISRA C 2012

5

Custom Coding Rules

6

Group 1: Files 6-2

Group 2: Preprocessingiiiino... 6-3

Group 3: Type definitions 6-4
Group 4: Structures 6-5
Group 5: Classes (C++) 6-6
Group 6: Enumerations 6-7
Group 7: Functions 6-8
Group 8: Constants0 .. 6-9
Group 9: Variables 6-10
Group 10: Name spaces (C++) 6-11
Group 11: Class templates (C++) 6-12
Group 12: Function templates (C++) 6-13

Code Metrics

[

Polyspace Report Components — Alphabetical List

8

Configuration Parameters

9

Productmode 9-2
Settings 9-2
Dependency 9-2

vi Contents

Command-Line Information 9-2

Settingsfrom (C) 9-3
SettingS . . oot 9-3
Dependency 9-4
Command-Line Information 9-4

Settings from (C++) 9-5
SEttINgS . . . e 9-5
Dependency e 9-5
Command-Line Information 9-6

Use custom projectfile 9-7
SettIngS . .o 9-7
Dependency 9-7
Command-Line Information 9-7

Project configuration 9-8
Settingsot 9-8
Dependency 9-8
Command-Line Information 9-8

Enable additionalfilelist 9-9
Settings . . oot e 9-9
Command-Line Information 9-9

Stub lookup tables 9-10
SEttINgS . . . 9-10
TIPS ot e 9-11
Command-Line Information 9-11

Input e 9-12
Settingst 9-12
Command-Line Information 9-12

Tunable parameters 9-13
Settings i e 9-13
Command-Line Information 9-13

Output 9-14
Settings i e 9-14
Command-Line Information 9-14

vii

viii

Model reference verificationdepth 9-15

SettINgsS . .ot 9-15
Command-Line Information 9-15
Model by model verification 9-17
Settings . . .ot 9-17
Command-Line Information 9-17
Outputfolder 9-18
Settings ..ot 9-18
Command-Line Information 9-18
Make output folder name unique by adding a suffix 9-19
Settingsot 9-19
Command-Line Information 9-19
Add results to current Simulink project 9-20
Settings i 9-20
Dependencies 9-20
Command-Line Information 9-20
Open results automatically after verification 9-21
Settings . . .ot 9-21
Command-Line Information 9-21
Check configuration before verification 9-22
SEttINgS . . . 9-22
Command-Line Information 9-22
Verify all occurrences, 9-23
Settingst e 9-23
Command-Line Information 9-23

Approximations Used During Bug Finder Analysis

10

Inputs in Polyspace Bug Finder 10-2

Global Variables in Polyspace Bug Finder 10-3

Contents

Option Descriptions

1 Option Descriptions

1-2

Source code language (-1ang)

Specify language of source files

Description

Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c €

Only files with extension .cpp or .cc CPP

Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-3 for ways in which the source code language can
be automatically determined.

Command line: Use the option -1ang. See “Command-Line Information” on page 1-4.

Settings

Default: C-CPP for hand code and C for model-generated code

C

If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

Source code language (-1ang)

CPP

If your project contains only C++ files, choose this setting. This value restricts the

verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP

If your project contains C and C++ source files, choose this setting. This value allows

for C and C++ language conventions. . c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies

The language option allows and disallows many options and option values. Some
options change depending on your language selection. For more information, see the
individual analysis option pages.

If you create a Polyspace project or options file from your build system, the value of

this option is determined by:

+ The argument to the -1ang option. For more information, see “Create Project
Automatically” or “Create Project Automatically at Command Line”.

+ If you do not specify the -1ang option, the source code language is determined by
whether your source files are compiled as C or C++ files.

-lang Argument C or C++ Source Code Language

€ @

cpp CPP

cppll CPP
The option C++11
extensions (-cppll-
extension) is also
enabled.

auto or no argument C C

auto or no argument C++ CPP

auto or no argument Both C-CPP

1 Option Descriptions

Command-Line Information

Parameter: -1lang

Value: ¢ | cpp | c-cpp

Default: c-cpp

Example: polyspace-bug-finder-nodesktop -lang c-cpp -sources
"filel.c,file2.cpp"

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c"

Compiler (-compiler)

Compiler (-compiler)

Specify the compiler that you use to build your source code

Description

Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as

compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -compiler. See “Command-Line Information” on page
1-9.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and

bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Settings

Default: generic

1 Option Descriptions

1-6

generic
Analysis allows only standard syntax.
For C code, syntax must follow the ANSI® C standard.
For C++ code, syntax must follow ISO®/IEC 14882:2003 C++ (C++ 2003). If you want
to allow C++ 11 syntax (ISO/IEC 14882:2011 C++), also select C++ 11 extensions.
gnu3.4
Analysis allows GCC 3.4 syntax.
gnu4.6
Analysis allows GCC 4.6 syntax.
gnu4.’7
Analysis allows GCC 4.7 syntax.

For more information, see “Limitations” on page 1-8.

gnu4.8
Analysis allows GCC 4.8 syntax.

For more information, see “Limitations” on page 1-8.

gnu4.9
Analysis allows GCC 4.9 syntax.

For more information, see “Limitations” on page 1-8.

clang3.5
Analysis allows Clang 3.5 syntax.

The Clang attribute (vector size()) is not supported.
visual9.0

Analysis allows Microsoft® Visual C++® 2008 syntax.
visuall0.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-st1l-stubs.
visualll.O

Analysis allows Microsoft Visual C++ 2012 syntax.

Compiler (-compiler)

This option implicitly enables the option -no-st1l-stubs.

visuall2.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-st1l-stubs.

visuall4d.O

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-st1l-stubs.

keil
Analysis allows non-ANSI C syntax and semantics associated with the Keilo products
from ARM (www .keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

diab

Analysis allows non-ANSI C syntax and semantics associated with the Wind River®
Diab compiler.

If you select diab, the option Target processor type (-target) shows only the
targets that are allowed for the Diab compiler. See Diab Compiler (-compiler
diab).

tasking

Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking, the option Target processor type (-target) shows only
the targets that are allowed for the TASKING compiler. See TASKING Compiler (-
compiler tasking).

greenhills

Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®
compiler.

http://www.keil.com/
http://www.iar.com/

1 Option Descriptions

If you select greenhills, the option Target processor type

(-target) shows

only the targets that are allowed for a Green Hills compiler. See Green Hills

Compiler (-compiler greenhills).

Tips

+ If you use a Visual Studio compiler, you must use a Target processor type (-
target) option that sets 1ong long to 64 bits. Compatible targets include: 1386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, k86 64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

+ If you enable Check JSF C++ rules

(-jsf-coding-rules), select the compiler

generic. If you use another compiler, Polyspace cannot check the JSF® coding rules
that require conforming to the ISO standard. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations

Polyspace does not support certain features of these compilers:

* GNU® compilers (version 4.7 or later):

Nested functions.

For instance, the function bar is nested in function foo:

void foo (int a, int b)
{

void bar (int c¢) { return c * c; }
return bar (a) + bar (b);
}

Forward declaration of function parameters.

For instance, the parameter 1en is forward declared:

void func (int len; char data[len] [len], int len)
{

/* o %/
}

Compiler (-compiler)

Complex integer data types.

However, complex floating point data types are supported.

Structures with flexible array members.

For instance, the structure S has a flexible array member tab.

struct S {
int x;
int tabl[]; /* flexible array member - not supported */

b

* Visual Studio compilers:
* C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer () restrict (amp)

{

}

___assume statements.

You typically use assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

+ Managed Extensions for C++ (required for the .NET Framework)

* _ declspec keyword with attributes other than noreturn, nothrow,
selectany or thread.

Command-Line Information

Parameter: -compiler

Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | clang3.5
| visual9.0 | visuall0.0 | visualll.O | wvisuall2.0 | visualld.O |
keil | iar | diab | tasking

1 Option Descriptions

1-10

Default: generic

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c" -0S-target Linux -compiler gnu4.6
Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"filel.cpp,file2.cpp" -0S-target Visual -compiler visual7.l

See Also

Target processor type (-target) | C++11 extensions (-cppll-extension)
| Block charl6/32 t types (-no-uliterals)

Topics

“Analyze Keil or IAR Compiled Code”
“Supported C++ 2011 Extensions”
“Troubleshooting in Polyspace Bug Finder”

Target processor type (-target)

Target processor type (-target)

Specify size of data types and endianness by using predefined target processor list

Description

Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. To see the sizes of types, click the Edit button to the right of the Target
processor type drop-down list.

If you select diab, tasking or greenhills for Compiler (-compiler), in the user
interface, you see only the processors allowed for that compiler. To find the data type
sizes for each processor, see Diab Compiler (-compiler diab). Unlike the
processors for other compilers, you cannot see the data type sizes in the user interface.

Command line: Use the option -target. See “Command-Line Information” on page 1-
14.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as 1386
compared to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace
analysis, but deploy your code to the 1386 processor, your Polyspace results are not
always applicable.

1-11

1 Option Descriptions

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

#include <limits.h>
int array[(char)UCHAR MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the -fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: 1386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target cha [short |int [lon [long |floa |double {long ptr |Default |endian |[Align
r g |long |t double? sign of ment
char
1386 8 16 32 32 |64 32 |64 96 32 |signed |Little 32
sparc 8 16 32 |32 (64 32 |64 128 32 |signed |Big 64
m68kP 8 |16 32 |32 |64 32 |64 96 32 |signed |Big 64
powerpc 8 16 32 |32 |64 32 |64 128 32 |unsigne |Big 64
d
c-167 8 16 16 32 |32 32 |64 64 16 |signed |Little 64
tms320c3x |32 (32 32 (32 |64 32 |32 64 32 |signed |Little 32
sharc21x61 |32 [32 (32 [32 |64 |32 [32[64]|32[64] |32 |signed |Little |32
necv850 8 16 32 32 |32 32 |32 64 32 |signed |Little 32
[16,
8]
hc08® 8 |16 16 |32 |32 (32 (32[64]|32[64] |16 |unsigne |Big 32
[32] d [16]

1-12

Target processor type (-target)

Target cha [short |int [lon [long |floa |double {long ptr |Default |endian |[Align
r g |long |t double? sign of ment
char
hcl?2 8 16 16 |32 |32 32 |(32[64]|32[64] [32% |signed |Big 32
[32] [16]
mpc5xx 8 16 32 |32 |64 32 |32 [64]|32[64] |32 |signed |Big 32
(16]
cl8 8 16 16 |32 |32 32 |32 32 16 |signed |Little 8
[24] [24]
x86 64 8 16 32 |64 |64 32 |64 128 64 |signed |Little 64
[32] [32]
£
mcpu. . . 8 8[16] (16 |32 (32 32 |32[64]|32[64] |16 |signed |Little 32
(Advanced) #|[16] [32] [64] [32] [16,
8]
Targets for See Diab Compiler (-compiler diab).
Diab compiler
Targets for See TASKING Compiler (-compiler tasking).
TASKING
compiler
Targets for See Green Hills Compiler (-compiler greenhills).
Green Hills
Compiler
a. For targets where the size of 1ong double is greater than 64 bits, the size used for computations is not always the

same as the size listed in this table. The exceptions are:

For targets 1386, x86_64 and m68k, 80 bits are used for computations, following the practice in common

compilers.

For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.

If you use a Visual compiler, the size of 1ong double used for computations is the same as size of double,

following the specification of Visual C++ compilers.

The M68k family (68000, 68020, and so on) includes the “ColdFire” processor

c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not

taken into account by this support

d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.

1-13

1 Option Descriptions

g.

1-14

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more
generic targets. For more information, see Generic target options.

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor does
not match the characteristics of a predefined processor, contact MathWorks® technical
support.

Command-Line Information

Parameter: -target

Value: 1386 | sparc | m68k | powerpc | c-167 | x86 64 | tms320c3x |
sharc21x6l | necv850 | hc08 | hcl2 | mpcbxx | cl8 | mcpu

Default: 1386

Example: polyspace-bug-finder-nodesktop -target mé68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

See Also

Polyspace Results
Lower Estimate of Local Variable Size | Higher Estimate of Local
Variable Size

Topics

“Specify Analysis Options”

“Modify Predefined Target Processor Attributes”
“Specify Generic Target Processors”

Diab Compiler (-compiler diab)

Diab Compiler (-compiler diab)

Specify the Wind River Diab compiler

Description

Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface, you see only the processors allowed for the Diab compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target
machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.
* In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.

* At the command line, use the flag - I with the polyspace-bug-finder-nodesktop
command.

For more information, see —I.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings

The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

Target cha |sho |int |long |long |floa |double [long |ptr |Default |Endianne |Alignment
r rt long |t doubl sign of |ss
e char
1386 8 16 |32 |32 |64 |32 |64 96 32 |signed |Little 32

1-15

1 Option Descriptions

Target cha |sho |int |long |long |floa |double (long |ptr |Default |Endianne |Alignment
r rt long |t doubl signof |ss
e char
powerpc 8 16 |32 (32 |64 |32 |64 64 32 |unsigne |Big 64
d
powerpc64 |8 16 (32|64 |64 |32 |64 64 64 |unsigne |Big 64
d
arm 8 16 |32 |32 64 32 |64 64 32 |unsigne |Big 64
d
coldfire 16 |32 (32 |64 |32 |64 64 32 |signed |Big 64
mips 16 |32 (32 |64 |32 |64 64 32 |signed |Big 64
mcore 16 |32 |32 64 32 |64 64 32 |unsigne |Big 64
d
rh850 8 16 |32 |32 64 32 |64 64 32 |signed |Little 32
superh 8 16 |32 (32 |64 |32 |64 64 32 |signed |Big 64
tricore 8 16 (32|32 |64 |32 |64 64 32 |signed |Little 64
68k, sparc |Not supported.

In addition, wchar t isinterpreted as unsigned short and size t isinterpreted as
unsigned int.

If you use Diab compiler flags to change any of these default specifications and want to
emulate these flags, contact Technical Support.

Tips

If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information

Parameter: -compiler diab -target

Value: 1386

| powerpc
tricore

Default: powerpc

1-16

arm |

coldfire

| mips

| mcore |

rh850 |

superh

Diab Compiler (-compiler diab)

Example: polyspace-bug-finder-nodesktop -compiler diab -target
tricore

See Also

Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2016b

1-17

1 Option Descriptions

1-18

TASKING Compiler (-compiler tasking)

Specify the Altium TASKING compiler

Description

Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface, you see only the processors allowed for the TASKING compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files.

* In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.

+ At the command line, use the flag - I with the polyspace-bug-finder-nodesktop
command.

For more information, see —I.

The software supports different versions of the TASKING compiler, depending on the
target:

+ TriCore: 6.0 and older versions

+ (C166: 4.0 and older versions

* ARM: 5.2 and older versions

* RHS850: 2.2 and older versions

TASKING Compiler (-compiler tasking)

Settings

The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

Target cha [short |int [lon |[long [floa |double |long ptr [Default |[Endianne |Alignment
r g |long |t double sign of |ss
char
tricore 8 16 32132 |64 32 |64 64 32 |signed |Little 32
clé6 8 |16 16 (32 |64 32 (64 64 32 |signed |Little 16
rh850 8 |16 32|32 (64 32 |64 64 32 |signed |Little 64
arm 8 |16 32 (32 |64 32 |64 64 32 |signed |Big 64

In addition, wchar t isinterpreted as unsigned short and size t isinterpreted as
unsigned int.

If you use TASKING compiler flags to change any of these default specifications and
want to emulate these flags, contact Technical Support.

Tips

Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover limitations.pdf in
matlabroot\polyspace\verifier\code prover. Here, matlabroot is the
MATLAB® installation folder, for instance, C: \Program Files\MATLAB\R2017b.

The CPU used is TC1793. If you use a different CPU, set the following analysis
options in your project:
* Disabled preprocessor definitions (-U): Undefine the macro

__CPU_TC1793B_ .

* Preprocessor definitions (-D): Define the macro CPU_ . Enter
__CPU__=xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro CPU_TC1793B__ for your CPU.
For instance, enter CPU _TC1793A .

1-19

1 Option Descriptions

1-20

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project. For more information, see:

+ “Create Project Automatically”

“Create Project Automatically at Command Line”

* For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information

Parameter: -compiler tasking -target

Value: tricore | cl66 | rh850 | arm

Default: tricore

Example: polyspace-bug-finder-nodesktop -compiler tasking -target
tricore

See Also

Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2017a

Green Hills Compiler (-compiler greenhills)

Green Hills Compiler (-compiler greenhills)

Specify Green Hills compiler

Description

Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface, you see only the processors allowed for aGreen Hills compiler. Your choice
of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files.

* In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.

+ At the command line, use the flag - I with the polyspace-bug-finder-nodesktop
command.

For more information, see —I.

Settings

The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

1-21

1 Option Descriptions

powerpc

16

32

32

64

32

64

64

32

unsigned

Big

64

1-22

Green Hills Compiler (-compiler greenhills)

powerpc64

16

32

64

64

32

64

64

64

unsigned

Big

64

1-23

1 Option Descriptions

arm

16

32

32

64

32

64

64

32

unsigned

Little

32

1-24

Green Hills Compiler (-compiler greenhills)

armo64

16

32

64

64

32

64

64

64

unsigned

Little

64

1-25

1 Option Descriptions

tricore

16

32

32

64

32

64

64

32

signed

Little

32

1-26

Green Hills Compiler (-compiler greenhills)

rh850 8 |16 (32|32 |64 32 |64 64 32 |signed |Little 64 E
1]

1-27

1 Option Descriptions

i386

16

32

32

64

32

64

96

32

signed

Little

32

1-28

Green Hills Compiler (-compiler greenhills)

x86_64

32

64

64

32

64

128

64

signed

Little

128

If you use the Green Hills compiler flags to change any of these default specifications and
want to emulate these flags, contact Technical Support.

1-29

1 Option Descriptions

1-30

Tips

+ Polyspace supports the embedded configuration for the 1386 target. If your x86 Green
Hills compiler is configured for native Windows® development, you can see
compilation errors or incorrect analysis results with Code Prover. Contact Technical
Support.

For instance, Green Hills compilers consider a size of 12 bytes for 1ong double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

+ If you create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options -filetype and -os_dir are not implemented in the
project. To emulate the -os_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information

Parameter: -compiler greenhills -target

Value: powerpc | powerpc64 | arm | armé64 | tricore | rh850 | arm |
i386 | x86 64

Default: powerpc

Example: polyspace-bug-finder-nodesktop -compiler greenhills -target
arm

See Also

Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2017b

Generic target options

Generic target options

Specify size of data types and endianness by creating your own target processor

Description

The Generic target options dialog box opens when you set the Target processor
type to mcpu.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target, for example MyTarget. That new
target is added to the Target processor type option list.

Changing the genetic target has consequences for:

+ Detection of overflow

* Computation of sizeof objects

The Target processor type option is available on the Target & Compiler node in the
Configuration pane.

Settings

Default characteristics of a new target: listed as type [size]

* char [8]

* short [16]

* int [16]

« long [32]

+ long long [32]
* float [32]

* double [32]

* long double [32]

1-31

1 Option Descriptions

* pointer [16]

* char is signed

* endianness is little-endian

Dependency

A custom target can only be created when Target processor type (-target) is set

to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the

visual * options.

Command-Line Options

When using the command line, specify your target with the other target specification

options.
Option Description Available Example
With
-little-endian Little-endian mcpu polyspace-bug-finder-

architectures are
Less Significant byte
First (LSF). For
example: 1386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

nodesktop -target mcpu -
little-endian

1-32

Generic target options

Option

Description

Available
With

-big-endian

Big-endian
architectures are
Most Significant
byte First (MSF).
For example:
SPARC, m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu

polyspace-bug-finder-
nodesktop -target mcpu -
big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets

polyspace-bug-finder-
nodesktop -default-sign-
of-char unsigned -target

-char-is-16bits

char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu

polyspace-bug-finder-
nodesktop -target mcpu -
char-is-16bits

1-33

1 Option Descriptions

Option Description Available Example
With

-short-is-8bits Define short as 8 |mcpu polyspace-bug-finder-
bits, regardless of nodesktop -target mcpu -
sign short-is-8bits

-int-is-32bits Define int as 32 mcpu, hc08, |polyspace-bug-finder-
bits, regardless of hcl2, nodesktop -target mcpu -
sign. Alignment is |mpc5xx int-is-32bits
also set to 32 bits.

-long-is-32bits Define long as 32 |All targets |polyspace-bug-finder-
bits, regardless of nodesktop -target mcpu -
sign. Alignment is long-is-32bits
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

-long-long-is-64bits |Define long long |mcpu polyspace-bug-finder-
as 64 bits, nodesktop -target mcpu -
regardless of sign. long-long-is-64bits
Alignment is also set
to 64 bits.

—double-is-64bits Define double and |mcpu, polyspace-bug-finder-
long double as 64 |sharc21x6l|nodesktop -target mcpu -
bits, regardless of , hc08, double-is-64bits
sign. hcl2,

mpc5xx

-pointer-is-24bits Define pointer as 24 |(c18 polyspace-bug-finder-
bits, regardless of nodesktop -target cl8 -
sign. pointer-is-24bits

-pointer-is-32bits Define pointer as 32 |mcpu polyspace-bug-finder-—

bits, regardless of
sign.

nodesktop -target mcpu -
pointer-is-32bits

1-34

Generic target options

Option Description Available Example
With
—align [32]16]8] Specifies the largest |mcpu, polyspace-bug-finder-
alignment of struct nodesktop -target mcpu -
or array objects to [Only 16 or |align 16
the 32, 16 or 8 bit 32 bits for:
boundaries. hc08, hcl2,
mpc5xx

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

Common Generic Targets

The following tables describe the characteristics of common generic targets.
ST7 (Hiware C compiler : HiCross for ST7)

ST7 char |[short long long float double (long ptr charis |endian
long double
size 8 16 32 32 32 32 32 16/32 |unsigne |Big
d
alignmen |8 16/8 |16/8 |32/16/8 [32/16/8 |32/16/8 |32/16/ |32/16/ |32/16/ |N/A N/A
t 8 8 8
ST9 (GNU C compiler : gcc9 for ST9)
ST9 char |[short long long float double (long |ptr charis |endian
long double
size 8 16 32 32 32 64 64 16/64 |unsigne |Big
d
alignmen |8 8 8 8 8 8 8 8 N/A N/A
t

1-35

1 Option Descriptions

Hitachi H8/300, H8/300L

size 8 16 16/3 |32 64 32 654 64 16 unsigne |Big
2 d

alignmen |8 16 16 16 16 16 16 16 16 N/A N/A

t

Hitachi H8/300H, H8S, H8C, H8/Tiny

size 8 16 16/ |32 64 32 64 64 32 unsigne | Big
32 d

alignmen |8 16 32/ |32/16 [32/16 |32/16 |32/16 |32/16 |32/16 |N/A N/A
t 16

See Also

Target processor type (-target)

Topics
“Specify Generic Target Processors”
“Common Generic Targets”

Respect C90 standard (-no-language-extensions)

Respect C90 standard (-no-language-
extensions)

Restrict analysis to C language specified in ANSI C standard

Description

Restrict the analysis to the C language specified in the ANSI C standard (ISO/IEC
9899:1990). Language extensions added in later standards such as C99 generate
compilation errors.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-38 for other options you must also enable.

Command line: Use the option -no-language-extensions. See “Command-Line
Information” on page 1-38.

Why Use This Option

Use this option if you compile your code by using the C90 standard.

For instance, if you compile with the GCC option -ansi or -—std=c90, use this option.

Settings

¥ On

Restrict the analysis to the C90 standard. Code must conform to the ANSI C
standard (ISO/IEC 9899:1990).

Off (default)
Allow language extensions from the C99 standard (ISO/TEC 9899:1999).

1-37

1 Option Descriptions

Dependencies

This option is available only when Source code language (-lang) is setto Cor C-
CPP.

If you enable this option, you cannot use Compiler (-compiler) settings keil and
iar.

Command-Line Information

Parameter: -no-language-extensions

Default: off

Example: polyspace-bug-finder-nodesktop -lang ¢ -no-language-
extensions

Introduced in R2015b

1-38

Sfr type support (-sfr-types)

Sfr type support (-sfr-types)

Specify sizes of sfr types for code developed with Keil or IAR compilers

Description

Specify sizes of sfr types (types that define special function registers).

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependency” on page 1-39 for other options you must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
1-40.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency

This option is available only when Compiler (-compiler) is setto keil or iar.

1-39

1 Option Descriptions

Command-Line Information

Syntax: -sfr-types sfr name=size in bits, ...

No Default

Name Value: an sfr name such as sfrile6.

Size Value: 8 | 16 | 32

Example: polyspace-bug-finder-nodesktop -lang ¢ -compiler iar -sfr-
types sfr=8,sfrl6=16

See Also

Topics
“Specify Target Environment and Compiler Behavior” (Polyspace Code Prover)
“Supported Keil or IAR Language Extensions” (Polyspace Code Prover)

1-40

Division round down (-div-round-down)

Division round down (-div-round-down)

Round down quotients from division or modulus of negative numbers instead of rounding
up

Description

Specify whether quotients from division and modulus of negative numbers are rounded
up or down.

Note 2 = (a / b) * b + a % bisalways true.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -div-round-down. See “Command-Line Information”
on page 1-42.

Why Use This Option

Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard (ISO/TEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

1-41

1 Option Descriptions

1-42

Settings

¥/ On

If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced

froma $ b =a - (a / b) * b.
Example: assert (-5/3 == -2 && -5%3 == 1); is true.
Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced froma % b = a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert (-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down

Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

Enum type definition (-enum-type-definition)

Enum type definition (-enum-type-definition)

Specify how to represent an enum with a base type

Description

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. When using this option,
each enum type is represented by the smallest integral type that can hold its
enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option —enum-type-definition. See “Command-Line
Information” on page 1-45.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings, compile this code using the compiler settings that you
typically use:

#include <assert.h>
#include <limits.h>

enum { MAXSIGNEDBYTE=127 } mysmallenum t;
int dummy[(int)sizeof (mysmallenum t) - (int)sizeof(int)]; /* Breakpoint 1 */

enum { MYMAXINT = INT MAX } myintenum t;
int main (void) {

1-43

1 Option Descriptions

1-44

assert ((MYMAXINT + 1) < 0); /* Breakpoint 2 */
assert ((MYMAXINT + 1) >= 0); /* Breakpoint 3 */
assert (0); /* Breakpoint 4 */

return 0;

}

If compilation does not fail even at breakpoint 4, your assert statements do not behave
as expected. Check your compiler documentation and change your compiler settings. If
compilation fails at:

* Breakpoint 1: Use defined-by-compiler for this option.

* Breakpoint 2: Use auto-signed-first for this option.

* Breakpoint 3: Use auto-unsigned-first for this option.

Settings

Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu.
For the gnu compilers, it uses the first type that can hold all of the enumerator

values from this list: signed int, unsigned int, signed long, unsigned long,
signed long long, and unsigned long long.

auto-signed-first

Uses the first type that can hold all of the enumerator values from this list: signed
char,unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:
+ If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

+ If one or more enumerator values are negative: signed char, signed short,
signed isnt, signed long, and signed long long.

Enum type definition (-enum-type-definition)

Command-Line Information

Parameter: -enum-type-definition

Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -enum-type-definition auto-
signed-first

1-45

1 Option Descriptions

Signed right shift (-logical-signed-right-
shift)

Specify how to treat the sign bit for logical right shifts on signed variables

Description

Choose between arithmetic and logical shift for right shift operations on negative values.

i

This option does not modify compile-time expressions. For more details, see “Limitation’
on page 1-47.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -1ogical-signed-right-shift. See “Command-Line
Information” on page 1-47.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is
signed and has negative values, the behavior is implementation-defined. Different
compilers choose between arithmetic and logical shift. Use this option to emulate your
compiler.

Settings

Default: Arithmetical

Arithmetical

The sign bit remains:

1-46

Signed right shift (-logical-signed-right-shift)

(=4) > 1 = =2

(=7) > 1 = -4

7 > 1 =3
Logical

0 replaces the sign bit:

(=4) >> 1 = (-4U) >> 1 = 21474836406
(=7) >> 1 = (-7U) >> 1 = 2147483644
7 >> 1 =3
Limitation

In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:
int arr[((-4) >> 20) 1:

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However,
arithmetically, the result is -1. This statement causes a compilation error (arrays cannot
have negative size) because the standard right-shift behavior for signed integers is
arithmetic.

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.

Parameter: -1logical-signed-right-shift

Default: Arithmetic signed right shifts

Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

1-47

1 Option Descriptions

1-48

C++11 extensions (-cppll-extension)

Allow C++11 language extensions

Description

Allow C++11 language extensions.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-49 for other options you must also enable.

Command line: Use the option -cppll-extension. See “Command-Line Information”
on page 1-49.

Why Use This Option

If your compiler allows C++11 language extensions, enable this option.

To check if your compiler allows the extensions, compile this code using the compiler
settings that you typically use:

#if defined(cplusplus) && _ cplusplus >= 201103L
/* C++11 compiler */

#else
void* ptr = nullptr;

#endif

If the code compiles, enable this option.

For instance, on a GCC compiler, the code compiles with the -std=c++11 flag but fails to
compile without the flag. If you typically use the flag, enable this option.

C++11 extensions (-cppll-extension)

Settings

¥ On
The analysis allows C++11 syntax.
Off (default)

The analysis does not allow C++11 syntax.

Dependencies

This analysis option is available only when both these conditions are true:

* Source code language (-lang) is CPP or C-CPP.

* Compiler (-compiler) is generic, gnu4.6,or gnud.7.

Command-Line Information

Parameter: -cppll-extension
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -cppll-extension

See Also

Compiler (-compiler) | Block charl6/32 t types (-no-uliterals)

Topics
“Supported C++ 2011 Extensions”

1-49

1 Option Descriptions

Block char16/32_t types (-no-uliterals)

Disable Polyspace definitions for char16 t or char32 t

Description

Specify that the analysis must not define char16 t or char32 t types.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-51 for other options you must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on

page 1-51.

Why Use This Option

If your compiler defines charl6 t and/or char32 t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of charle t
and char32 t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short charlé t;
typedef unsigned long char32 t;

If the file compiles, it means that your compiler has already defined char16 t and
char32 t. Enable this Polyspace option.

Settings

¥/ On

The analysis does not allow charl6 t and char32 t types.

1-50

Block char16/32_t types (-no-uliterals)

Off (default)
The analysis allows char16 t and char32 t types.

Dependencies

You can select this option only when these conditions are true:

* Source code language (-lang) is CPP or C-CPP.

* Compiler (-compiler) is either generic or a gnu version.

Command-Line Information

Parameter: -no-uliterals

Default: off

Example: polyspace-bug-finder-nodesktop -lang cpp -compiler gnu4.7 -
cppll-extension -no-uliterals

See Also

Compiler (-compiler) | C++11 extensions (-cppll-extension)

Topics
“Supported C++ 2011 Extensions”

1-51

1 Option Descriptions

1-52

Pack alignment value (-pack-alignment-
value)

Specify default structure packing alignment for code developed in Visual C++

Description

Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-53.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify
this option for analysis, the #pragma pack directives take precedence. See “#pragma
Directives” (Polyspace Code Prover).

Settings
Default: 8

You can enter one of these values:

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

Pack alignment value (-pack-alignment-value)

.
0 &~ DN =

16

Command-Line Information
Parameter: -pack-alignment-value
Value:1 | 2 | 4 | 8 | 16
Default: 8

Example: polyspace-bug-finder-nodesktop -compiler visuallO -pack-

alignment-value 4

1-53

1 Option Descriptions

1-54

Ignore pragma pack directives (-ignore-
pragma-pack)

Ignore #pragma pack directives

Description

Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-55.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack (2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors. See also “#pragma Directives” (Polyspace Code Prover).

Settings

¥ On
The analysis ignores the #pragma directives.

Off (default)

The analysis takes into account specifications in the #pragma directives.

Ignore pragma pack directives (-ignore-pragma-pack)

Command-Line Information
Parameter: -ignore-pragma-pack

Default: Off
Example: polyspace-bug-finder-nodesktop -ignore-pragma-pack

See Also

1-55

1 Option Descriptions

Management of size_t (-size-t-type-is)

Specify the underlying data type of size t

Description

Specify the underlying data type of size t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -size-t-type-is. See “Command-Line Information”
on page 1-57.

Why Use This Option

The analysis associates a data type with size t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size t to be defined as
unsigned longorunsigned long long. Replace unsigned int with unsigned
long and try again.

1-56

Management of size_t (-size-t-type-is)

Settings

Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
size t.
unsigned-int
The analysis considers unsigned int as the underlying type of size t.
unsigned-long
The analysis considers unsigned long as the underlying type of size t.
unsigned-long-long

The analysis considers unsigned long long as the underlying type of size t.

Command-Line Information

Parameter: -size-t-type-is

Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-
long-long

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -size-t-type-is unsigned-long

1-57

1 Option Descriptions

1-58

Management of wchar_t (-wchar-t-type-is)

Specify the underlying data type of wchar t

Description

Specify the underlying data type of wchar t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 1-59.

Why Use This Option

The analysis associates a data type with wchar t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings
Default: defined-by-compiler

defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of
wchar t.

signed-short
The analysis considers signed short as the underlying type of wchar t.
unsigned-short

The analysis considers unsigned short as the underlying type of wchar t.

Management of wchar_t (-wchar-t-type-is)

signed-int

The analysis considers signed int as the underlying type of wchar t.
unsigned-int

The analysis considers unsigned int as the underlying type of wchar t.
signed-long

The analysis considers signed long as the underlying type of wchar t.
unsigned-long

The analysis considers unsigned long as the underlying type of wchar t.

Command-Line Information

Parameter: -wchar-t-type-is

Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -wchar-t-type-is signed-int

1-59

1 Option Descriptions

1-60

Ignore link errors (-no-extern-c)

Ignore certain linking errors

Description

Specify that the analysis must ignore certain linking errors.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node. See “Dependency” on page 1-61 for other options that you must also
enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 1-61.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option
may not resolve all the extern C linkage errors.

Settings

¥ On
Ignore linking errors if possible.

Off (default)

Stop analysis for linkage errors.

Ignore link errors (-no-extern-c)

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-extern-C

Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

1-61

1 Option Descriptions

1-62

Preprocessor definitions (-D)

Replace macros in preprocessed code

Description

Replace macros with their definitions in preprocessed code.

Set Option

User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 1-64.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro WIN32 as defined when you build your code, it executes code in a
#ifdef WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro WIN32 is not defined.

#ifdef WIN32
int env_var;
#endif

void set () {
env_var=1;

}

The error message states that env_var is undefined. However, the definition of env_var
isin the #ifdef WIN32 statement. The underlying cause for the error is that the
macro WIN32 is not defined. You must define WIN32.

Preprocessor definitions (-D)

Settings

No Default

Using the EII}I button, add a row for the macro you want to define. The definition must be

in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

namel=name?2 replaces all instances of namel by name?2.
name= instructs the software to ignore name.

name with no equals sign or value replaces all instances of name by 1. To define a
macro to execute code in a #ifdef macro name statement, use this syntax.

Tips

IfPolyspace does not support a non-ANSI keyword and shows a compilation error, use
this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the far keyword, to avoid compilation
errors:

In the user interface, enter far=.

On the command line, use the flag -D _ far.

The software replaces the far keyword with a blank string during preprocessing.
For example:

int far* pvValue;
is converted to:

int * pValue;

Polyspace recognizes keywords such as restrict and does not allow their use as
identifiers. If you use those keywords as identifiers (because your compiler does not

1-63

1 Option Descriptions

1-64

recognize them as keywords), replace the disallowed name with another name using
this option. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, to allow use of restrict as identifier:

In the user interface, enter restrict=my restrict.

* On the command line, use the flag -D restrict=my restrict.

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.

Parameter: -D

No Default

Value: flag=value

Example: polyspace-bug-finder-nodesktop -D HAVE MYLIB -D int32 t=int

See Also

Disabled preprocessor definitions (-U)

Disabled preprocessor definitions (-U)

Disabled preprocessor definitions (-U)

Undefine macros in preprocessed code

Description

Undefine macros in preprocessed code.

Set Option

User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 1-66.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro WIN32 as undefined when you build your code, it executes code in a
#ifndef WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This
option allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro WIN32 is defined.

#ifndef WIN32
int env_var;
#endif

void set () {
env_var=1;

}

The error message states that env_var is undefined. However, the definition of env_var
isin the #ifndef WIN32 statement. The underlying cause for the error is that the
macro WIN32 is defined. You must undefine WIN32.

1-65

1 Option Descriptions

Settings

No Default

Using the I:II_II:I button, add a new row for each macro being undefined.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.

Parameter: -U

No Default

Value: macro

Example: polyspace-bug-finder-nodesktop -U HAVE MYLIB -U USE COMI1

See Also

Preprocessor definitions (-D)

1-66

Code from DOS or Windows file system (-dos)

Code from DOS or Windows file system (-dos)

Consider that file paths are in MS-DOS style

Description

Specify that DOS or Windows files are provided for analysis.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 1-68.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings

Y| On (default)

Analysis understands file names and include paths for Windows/DOS files
For example, with this option,

#include "..\mY TEst.h""M

#include "..\mY other FILE.H""M

resolves to:

#include "../my test.h"

1-67

1 Option Descriptions

1-68

#include "../my other file.h"

Off
Characters are not controlled for files names or paths.

Command-Line Information

Parameter: -dos

Default: Off

Example: polyspace-bug-finder-nodesktop -dos -1
my copied include dir -D test=l

./

Stop analysis if a file does not compile (-stop-if-compile-error)

Stop analysis if a file does not compile (-stop-if-
compile-error)

Specify that a compilation error must stop the analysis

Description

Specify that even a single compilation error must stop the analysis.

Set Option

User interface: In the Configuration pane, the option is on the Environment
Settings node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-70.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings

Y| On

The analysis stops even if a single compilation error occurs.

1-69

1 Option Descriptions

1-70

Type

0o OCE

You see the compilation errors on the Qutput Summary pane.

Message File Line Col
 werification starts at Thu Dec 17 22:26:17 2015

& corels) detected but the verification uses 4 coreds),

identifier "x" is undefined my_File.c 1

Failed compilation, my_file.c

Werifier has detected compilation error{s) in the code,

Exiting because of previous error

For information on how to resolve the errors, see “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover).

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

Off (default)

The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

* The function return value can take any value in the range allowed by its data
type.

* The function can modify arguments passed by reference so that they can take any
value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a
run-time check can flag an operation in orange even though it does not fail in
practice.

If compilation errors occur, the Dashboard pane has a link, which shows that some
files failed to compile. You can click the link and see the compilation errors on the
Output Summary pane.

Command-Line Information

Parameter:-stop-if-compile-error

Default: Off

Example: polyspace-bug-finder-nodesktop -sources filename -stop-if-
compile-error

Stop analysis if a file does not compile (-stop-if-compile-error)

Introduced in R2017a

1-71

1 Option Descriptions

1-72

Command/script to apply to preprocessed files (-
post-preprocessing-command)

Specify command or script to run on source files after preprocessing phase of analysis

Description

Specify a command or script to run on each source file after preprocessing.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 1-74.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

+ For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

* For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

Command/script to apply to preprocessed files (-post-preprocessing-command)

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks Support for guidance.

Settings

No Default

Enter full path to the command or script or click j to navigate to the location of the
command or script. After the verification, this script is executed.

Tips

Your script must be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output.

Your script must preserve the number of lines in the preprocessed file. In other words,
it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

* To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

* To specify a Perl script replace keyword.pl that replaces all instances of a
keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute path>\replace keyword.pl.

Here, matlabroot is the location of the current MATLAB installation such as C:
\Program Files\MATLAB\R2015b\ and <absolute path>is the location of the
Perl script.

1-73

1 Option Descriptions

1-74

Use this Perl script as template. The script removes all instances of the far keyword.
#!/usr/bin/perl
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Remove far keyword
$line =~ s/far//g;

Print the current processed line to STDOUT
print $line;

}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning

. Matches any single character except newline

[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
["a-e] Matches any single letter not in the set a-e

\d Matches any single digit

\w Matches any single alphanumeric character or

x? Matches 0 or 1 occurrence of x

e Matches 0 or more occurrences of x

x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.

* When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default

http://perldoc.perl.org/perlre.html#Regular-Expressions

Command/script to apply to preprocessed files (-post-preprocessing-command)

Example in Linux®: polyspace-bug-finder-nodesktop -sources file name -
post-preprocessing-command ‘pwd’ /replace keyword.pl

Example in Windows: polyspace-bug-finder-nodesktop -sources file name
-post-preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My Scripts\replace keyword.pl"

See Also

Command/script to apply after the end of the code verification (-
post-analysis-command)

Topics
“Specify Analysis Options”

1-75

1 Option Descriptions

Include (-include)

Specify files to be #include-ed by each C file in analysis

Description

Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 1-
77.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work
around the issues, #define the keywords in a header file and provide the header file
with this option.

Settings
No Default
Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include file.h>.

1-76

Include (-include)

Command-Line Information

Parameter: -include

Default: None

Value: file (Use -include multiple times for multiple files)

Example: polyspace-bug-finder-nodesktop -include ‘pwd’/sources/
a file.h -include /inc/inc_file.h

See Also

1-77

1 Option Descriptions

1-78

Include folders (-1)

View include folders used for analysis

Description

View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

* To add include folders, on the Project Browser, right-click your project. Select Add
Source.

* To view the include folders that you used, with your results open, select Window >

Show/Hide View > Configuration. Under the node Environment Settings, you
see the folders listed under Include folders.

Settings

This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information

Parameter: -1
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc

Include folders (-T)

See Also

-I | Include (-include)

1-79

1 Option Descriptions

Constraint setup (-data-range-
specifications)

Constrain global variables, function inputs and return values of stubbed functions

Description

Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint
Specification template file. The template file is an XML file that you can generate in the
Polyspace user interface.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -~-data-range-specifications. See “Command-Line
Information” on page 1-81.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

* You have not provided the complete code. For example, you did not provide some of
the function definitions.

* Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can sometimes produce false positives.

1-80

Constraint setup (-data-range-specifications)

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for
subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings

No Default

Enter full path to the template file. Alternately, click lEd—ltI to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information

Parameter: -data-range-specifications

Value: rile

No Default

Example: polyspace-bug-finder-nodesktop -sources file name -data-
range-specifications "C:\DRS\range.xml"

See Also

Functions to stub (-functions-to-stub)

Topics
“Specify Analysis Options”
“Constraints”

1-81

1 Option Descriptions

1-82

Ignore default initialization of global variables (-no-
def-init-glob)

Consider global variables as uninitialized

Description

This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -no-def-init-glob. See “Command-Line
Information” on page 1-83.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings

¥/ On

Polyspace ignores implicit initialization of global and static variables. The
verification generates a red Non-initialized variable error if your code reads a
global or static variable before writing to it.

Ignore default initialization of global variables (-no-def-init-glob)

Off (default)

Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:

+ Ofor int
* Ofor char

*+ 0.0for float

Tips
+ If you initialize a global variable using the generated main:
Polyspace does not produce a red Non-initialized variable error if your code

reads the variable before writing to it. The error is not produced even if you turn
on the option Ignore default initialization of global variables.

Polyspace considers that before the first write operation on the variable in a
function, the variable can take any value allowed by its type.
For more information on initializing global variables using the generated main, see

Variables to initialize (-main-generator-writes-variables).

+ Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off

See Also

Topics
“Specify Analysis Options”

1-83

1 Option Descriptions

1-84

No STL stubs (-no-stl-stubs)

Do not use Polyspace implementations of functions in the Standard Template Library

Description

This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node. See “Dependency” on page 1-85 for other options that you must also enable.

Command line: Use the option -no-st1l-stubs. See “Command-Line Information” on
page 1-85.

Why Use This Option

The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.
You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover).

Settings

¥/ On

The verification does not use Polyspace implementations of the Standard Template
Library.

No STL stubs (-no-stl-stubs)

Off (default)

The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default:; Off

See Also

1-85

1 Option Descriptions

1-86

Functions to stub (-functions-to-stub)

Specify functions to stub during analysis

Description

This option affects a Code Prover analysis only.
Specify functions to stub during analysis.

For specified functions, Polyspace :

+ Ignores the function definition even if it exists.

* Assumes that the function inputs and outputs have full range of values allowed by
their type.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -functions-to-stub. See “Command-Line
Information” on page 1-88.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

* Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

* Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

Functions to stub (-functions-to-stub)

Settings
No Default

Enter function names or choose from a list.

Click EII}I to add a field and enter the function name.

Click dlﬁ to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function
void test (int a, int b);
//C++ template function

Template <class myType>
myType test (myType a, myType b);

//C++ class method

class A {
public:
int test (int wvarl, int var2);

i

//C++ template class method

template <class myType> class A
{

public:

nyType test (myType varl, myType var2);
bi

Function Type Basic Syntax Argument Syntax

Simple function test test (int; int)

1-87

1 Option Descriptions

Function Type Basic Syntax Argument Syntax

C++ template function |test test (myType; myType)

C++ class method A::test A::test (int;int)

C++ template class A<myType>::test A<myType>::test (myType;my
method Type)

Command-Line Information

Parameter: -functions-to-stub

No Default

Value: functionl|, function2(,...]1]

Example: polyspace-bug-finder-nodesktop -sources file name -
functions-to-stub function 1, function 2

See Also

Constraint setup (-data-range-specifications)

Topics
“Specify Analysis Options”

1-88

Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-

functions)

Stub autogenerated functions that use lookup tables and model them more precisely

Description

This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the
same task.

User interface: In your Polyspace project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 1-91.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

1-89

1 Option Descriptions

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no
extrapolation. The verification then replaces such functions with stubs for more precise
verification.

Settings

On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

* Does not check for run-time errors in the function body.

+ Calls a function stub instead of the actual function at the function call sites. The
stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

Function has been recognized as an Embedded Coder Lookup-Table function.

It was stubbed by Polyspace to increase precision.

Unset the -stub-embedded-coder-lookup-table-functions option to analyze
the code below.

[loff

The verification does not stub autogenerated functions that use lookup tables.

1-90

Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

Tips

+ The option applies to only autogenerated functions. If you integrate your own C/C++
S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table
functions as the autogenerated functions, use the option -function-behavior-
specifications and map your function to the ps lookup table clip
function.

+ If you run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information

Parameter: -stub-embedded-coder-lookup-table-functions

Default: On

Example: polyspace-code-prover-nodesktop -sources file name -stub-
embedded-coder-lookup-table-functions

See Also

Introduced in R2016b

1-91

1 Option Descriptions

1-92

Generate results for sources and (-generate-
results-for)

Specify files on which you want analysis results

Description

Specify files on which you want analysis results.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option —-generate-results-for. See “Command-Line
Information” on page 1-94.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the
same folder as the source files. Often, other header files belong to a third-party library.
Though these header files are required for a precise analysis, you are not interested in
reviewing findings in those headers. Therefore, by default, results are not generated for
those headers. If you are interested in certain headers from third-party libraries, change
the default value of this option.

Settings

Default: source-headers

source-headers

Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

Generate results for sources and (-generate-results-for)

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers

Results appear on source files and all header files. The header files can be in the
same folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument —-sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -1 at the command line).

custom

Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click EII}I to add a field. Enter a file or folder name.

Tips

1

Use this option in combination with appropriate values for the option Do not
generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for Do not generate results for |Final Result
sources and

custom: custom: Results are displayed on
header files in C:
C:\Includes C:\Includes \Includes

\Custom Library\ \Custom Library\ but

not generated for other
header files in C:

\Includes and its

subfolders.

1-93

1 Option Descriptions

1-94

Generate results for
sources and

Do not generate results for

Final Result

custom:

C:\Includes
\my header.h

custom:

C:\Includes\

Results are displayed on
the header file

my header.hinC:
\Includes\ but not
generated for other header
filesin C:\Includes\
and its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information

Parameter: —-generate-results-for

Value: all-headers | custom=rfilel[, file2[, ..
folderl[, folder2[,...]]

210

Example: polyspace-bug-finder-nodesktop -lang c -sources file name -
misra? required-rules -generate-results-for "C:\usr\include"

See Also

Topics

“Exclude Files from Analysis”

Introduced in R2016a

Do not generate results for (-do-not-generate-results-for)

Do not generate results for (-do-not-generate-
results-for)

Specify files on which you do not want analysis results

Description

Specify files on which you do not want analysis results.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option ~-do-not-generate-results-for. See “Command-
Line Information” on page 1-99.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the
same folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings

Default: include-folders

include-folders

Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

1-95

1 Option Descriptions

1-96

all-headers

Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -1 at the command line).

custom

Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click I:II:II:I to add a field. Enter a file or folder name.

Tips

1

Use this option appropriately in combination with appropriate values for the option
Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for Do not generate results for |Final Result
sources and

custom: custom: Results are displayed on
header files in C:

C:\Includes C:\Includes \Includes

\Custom_Library\ \Custom Library\ but

not generated for other
header files in C:
\Includes and its
subfolders.

Do not generate results for (-do-not-generate-results-for)

Generate results for Do not generate results for |Final Result

sources and

custom: custom: Results are displayed on
the header file

C:\Includes C:\Includes\ my header.hinC:

\my_header.h \Includes\ but not

generated for other header
files in C:\Includes\
and its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

The following results can involve more than one file:
MISRA C: 2004 Rules

+ MISRA C®: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on
the significance of more than 31 characters.

MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

1-97

1 Option Descriptions

1-98

MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name
space shall be distinct.

MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.

MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once
in one and only one file.

MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly
one external definition.

MISRA C++ Rules

MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide
an identifier declared in an outer scope.

MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.

MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple
translation units shall be declared in one and only one file.

MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly
one definition.

MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or
indirectly.

MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

JSF C++ Rules

JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the

presence/absence of the underscore character, the interchange of the letter O with
the number O or the letter D, the interchange of the letter I with the number 1 or
the letter 1, the interchange of the letter S with the number 5, the interchange of

Do not generate results for (-do-not-generate-results-for)

the letter z with the number 2 and the interchange of the letter n with the letter
h.

+ JSF C++ Rule 137 — All declarations at file scope should be static where possible.
JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

* Variable shadowing — Variable hides another variable of same name with
nested scope.
Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed
file, the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information

Parameter: -do-not-generate-results-for

Value: all-headers | custom=rfilel[, file2[,...]1] |

folderl[, folder2[,...]]

Example: polyspace-bug-finder-nodesktop -lang c -sources file name -
misra? required-rules -do-not-generate-results-for "C:\usr\include"

See Also

Topics
“Exclude Files from Analysis”

Introduced in R2016a

1-99

1 Option Descriptions

1-100

OSEK multitasking configuration (-osek-
multitasking)

Set up multitasking configuration from OIL file definition

Description

Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option

User interface: In the Configuration pane, the option is available on the
Multitasking pane.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 1-104.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up entry points,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings

4/ On
Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom

Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

OSEK multitasking configuration (-osek-multitasking)

When you select this option, in your source code, Polsypace supports these OSEK

multitasking keywords:

TASK
DeclareTask
ActivateTask
DeclareResource
GetResource
ReleaseResource
ISR
DeclareEvent

DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure entry points, interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This table lists a source code and corresponding OIL file for an OSEK multitasking
application.

1-101

1 Option Descriptions

Source Code

OIL File
CPU mySystem {
O0S myOs {
EE OPT = " EXMAJ
CPU DATA = mode]
APP SRC = "
MULTI STACK
ICD2 = TRUE
}i
MCU_ DATA = model
MODEL = 11 2
}i
}i
TASK init {
AUTOSTART = TRIU
PRIORITY = 1;
STACK = SHARED
SCHEDULE = FULL
}i
TASK afterinitl {
AUTOSTART = TRUE
PRIORITY = 1;
STACK = SHARED
SCHEDULE = FULL
}i
RESOURCE resl {
RESOURCEPROPERTY
}i
}i

J

4

#include <assert.h>
#include "Header file"

int varl;
iBt"yar2;
CRY vYar3;

bédédreRtlarm(Cyclic task ac
BeFAABERgsource (resl) ;
DeclareTask (init);

TASK (afterinitl) ;

CPU {

TASK (init) // entry point

\A12345678;

var2++;
ActivateTask (afterinitl);
E;var3++;
GetResource (resl) ;
varl++;
ReleaseResource (resl) ;

// cri

//

TASK (afterinitl)
{
var3++;
var2++;
GetResource (resl) ;
varl++;
ReleaseResource (resl) ;

// entry p

// cri

//

STANDARD;
void main ()

{}

tivate) ;

tical section begins

critical section ends

bint

tical section begins

critical section ends

To set up your multitasking configuration and analyze the code:

1-102

OSEK multitasking configuration (-osek-multitasking)

1 Copy the preceding code examples and save them on your machine as osek.oil and
osek.c, for instance in C: \Polyspace worskpace\OSEK.

2 Run an analysis on your OSEK project by using the command:

A

polyspace-bug-finder-nodesktop -sources C:\Polyspace workspace\OSEK\osek.c
-I Include Path -osek-multitasking auto

Include Path is the path to the include folder containing Header file, your
header files with OSEK function declarations.

Polyspace detects a data race on page 3-85 on variable var3 because of multiple read
and write operation from tasks init and afterinitl.

#include <assert.h>
#include "Header file"

int varl;

int var2;

int var3;

There is no defect on var2 since afterinitl goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on varl because it is protected
by the GetResource () and ReleaseResource () calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, search the result log file for "OSEK configuration from oil-files". To access
the log file from the user interface, select Window > Show/Hide View > Run Log. The
log file is located inside your project results folder.

"1 Off (default)

Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations

* The analysis ignores TerminateTask () declarations in your source code and
considers that subsequent code is executed.

* Polyspace ignores syntax elements of your OIL files that do not follow the syntax
defined here.

1-103

http://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

1 Option Descriptions

Command-Line Information

Parameter: -osek-multitasking

Value: auto | custom="'filel [,file2, dirl,...]"

Default: Off

Example: polyspace-bug-finder-nodesktop -sources source path -I
include path -osek-multitasking custom='path\to\filel.oil, path\to
\dir'

See Also

Topics
“Set Up Multitasking Analysis Manually”
“Modeling Multitasking Code”

Introduced in R2017b

1-104

Configure multitasking manually

Configure multitasking manually

Consider that code is intended for multitasking

Description

Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: See “Command-Line Information” on page 1-106.

Why Use This Option

In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings

¥ On
The code is intended for a multitasking application.

Off (default)

The code is not intended for a multitasking application.

1-105

1 Option Descriptions

1-106

Tips

If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information

There is no single command-line option to turn on multitasking analysis. By using the -
entry-points option, you turn on multitasking analysis.

See Also

Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Set Up Multitasking Analysis Manually”

Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)

Automatically detect certain families of multithreading functions

Description

This option affects a Code Prover analysis only.

Specify whether to use the automatic concurrency detection for POSIX®, VxWorks®,
Windows, and pC/OS II multithreading functions.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: Use the option —enable-concurrency-detection. See “Command-
Line Information” on page 1-111.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can explicitly specify your multitasking model using the
option Configure multitasking manually.

Settings

Y| On

If you use POSIX, VxWorks, Windows, or pC/OS II functions for multitasking, the
analysis automatically detects your multitasking model from your code.

1-107

1 Option Descriptions

1-108

The supported multitasking functions are the following:

Family |Thread Creation Critical Section Begins Critical Section Ends
POSIX |pthread create |pthread mutex lock [|pthread mutex unloc
k
VxWorks |taskSpawn semTake semGive
Windows |[CreateThread EnterCriticalSectio |LeaveCriticalSectio
n n
pC/OS II [OSTaskCreate OSMutexPend OSMutexPost

To activate automatic detection of concurrency primitives for VxWorks, use the
VxWorks template. For more information on templates, see “Create Project Using
Configuration Template” (Polyspace Code Prover).

Note For VxWorks, concurrency detection is possible only if the multitasking
functions are created from an entry point named main. If the entry point has a
different name, such as vxworks_entry point, do the following:

Verify whole application: Select verify the whole application.

2 Preprocessor definitions

vxworks entry point=main.

(-D) : In preprocessor definitions, set

3 Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection): Enable automatic concurrency detection.

"1 Off (default)

The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see Configure
multitasking manually.

Limitations

The multitasking model extracted by Polyspace does not include some features.
Polyspace cannot model:

Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

* Thread priorities and attributes — Ignored by Polyspace
* Recursive semaphores

* Unbounded thread identifiers — Warning

For example:

extern pthread t ids[]

Or

pthread t* ids = (pthread t* malloc(n*sizeof (pthread t))
+ Calls to concurrency primitive through high-order calls — Warning.

* Termination of threads — Polyspace ignores pthread join, and replaces
pthread exit by a standard exit.

* Shared local variables — Only global variables are considered shared. If a local
variable i1s accessed by multiple threads, the analysis does not take into account the
shared nature of the variable.

Example

In this example, the analysis does not take into account that the local variable x can
be accessed by both taskl and task2 (after the new thread is created).

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args) {
int* x = (int*) args;
*x = 1;
return (void*)x;

}

void taskl () {
int x;
X = 2;
pthread t id;
(void)pthread create(&id,NULL, task2, (void*) &x);
/* x (local var) passed to task2 */

/* Unknown thread priority means x = 1 OR x = 3.*%/

1-109

1 Option Descriptions

1-110

/* However, the analysis considers x = 3 */
/* Assertion below is green */
assert (x==3);

int main(void) {

}

taskl();
return 0;

Shared dynamic memory — Only global variables are considered shared. If a
dynamically allocated memory region is accessed by multiple threads, the analysis
does not take into account its shared nature.

Example

In this example, the analysis does not take into account that 1x points to a shared
memory region. The region can be accessed by both taskl and task2 (after the new
thread is created). The Code Prover analysis also reports 1x as a non-shared variable.

#include <pthread.h>
#include <stdlib.h>

static int *1x;

void* task2(void* args) {

int* x = (int*) args;
*x = 1;

return (void*)x;

void taskl () {

pthread t id;
1x = (int *)malloc(sizeof (int));

i1if (1x==NULL) exit (1);

(void)pthread create(&id,NULL, task2, (void*) 1x);

*1x = 3 ;
/* Unknown thread priority means *1lx = 1 OR *1x = 3.*/
/* However, the analysis considers *1x = 3 */

/* Assertion below is green */
assert (*1x==3);

Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

}

int main(void) {
taskl();
return 0;

Command-Line Information

Parameter: -enable-concurrency-detection

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -enable-
concurrency-detection

See Also

Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

1-111

1 Option Descriptions

1-112

Entry points (-entry-points)

Specify functions that serve as entry points to your multitasking application

Description

Specify functions that serve as entry points to your code. If the function does not exist,
the verification warns you and continues the verification.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-113 for other options you must also
enable.

Command line: Use the option —entry-points. See “Command-Line Information” on
page 1-113.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-—
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.

Entry points (-entry-points)

Click 'ﬂlﬁ to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Tips

If you specify a function as an entry point, you must provide its definition. Otherwise, the
analysis does not consider the function as an entry point.

Command-Line Information

Parameter: -entry-points

No Default

Value: functionl|[, function2([,...]1]

Example: polyspace-bug-finder-nodesktop -sources file name -entry-
points func 1, func 2 B

See Also

Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics

“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

1-113

1 Option Descriptions

1-114

Cyclic tasks (-cyclic-tasks)

Specify functions that represent cyclic tasks

Description

Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

+ Can execute any number of times.

+ Can be interrupted by noncyclic entry points on page 1-112, other cyclic tasks and
interrupts on page 1-117.

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the
task as nonpreemptable. See -non-preemptable-tasks.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-115 for other options you must also
enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on
page 1-115.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and
other tasks.

* Data race between two preemptable tasks:

Cyclic tasks (-cyclic-tasks)

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable Data race
including atomic operations.

* Data race between a preemptable task and a nonpreemptable task or interrupt:

An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

* A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.

Click EIE to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Command-Line Information
Parameter: -cyclic-tasks
No Default

1-115

1 Option Descriptions

Value: functionl|[, function2([,...]]

Example: polyspace-bug-finder-nodesktop -sources file name -cyclic-—
tasks func 1,func 2

See Also

-preemptable-interrupts | —-non-preemptable-tasks | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details
(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics

“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

1-116

Interrupts (-interrupts)

Interrupts (-interrupts)

Specify functions that represent nonpreemptable interrupts

Description

Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

+ Can execute any number of times.

+ Cannot be interrupted by noncyclic entry points on page 1-112, cyclic tasks on page 1-
114 or other interrupts.

To model an interrupt that can be interrupted by other interrupts, specify the
Iinterrupt as preemptable. See -preemptable-interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-118 for other options you must also
enable.

Command line: Use the option -interrupts. See “Command-Line Information” on

page 1-119.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other
tasks:

* Dace race between two interrupts:

1-117

1 Option Descriptions

1-118

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

* Data race between an interrupt and another task:

An operation in an interrupt cannot interfere with an atomic operation in any
other task. Even if the operations use the same shared variable without protection,
a data race cannot occur.

* An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click Ifl:ll:I to add a field and enter the function name.

Click dlﬁ to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Tips

If you specify a function as an interrupt, you must provide its definition. Otherwise, the
analysis does not consider the function as an interrupt.

Interrupts (-interrupts)

Command-Line Information

Parameter: -interrupts

No Default

Value: functionl|[, function2[,...]1]

Example: polyspace-bug-finder-nodesktop -sources file name -
interrupts func 1, func 2

See Also
-preemptable-interrupts | —-non-preemptable-tasks | Cyclic tasks (-
cyclic-tasks) | Entry points (-entry-points) | Critical section details

(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

1-119

1 Option Descriptions

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)

Specify routines that disable and reenable interrupts.

Description

This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-121 for other options you must also
enable.

Command line: Use the option -routine-disable-interrupts and -routine-
enable-interrupts. See “Command-Line Information” on page 1-122.

Why Use This Option

The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable all interrupts disables all interrupts until the
function enable all interrupts is called. Even if task, isrl and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;

void isrl () {
x = 0;

}

void isr2 () {
x = 1;

}

1-120

Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

volid task () {
disable all interrupts();
xX++;
enable all interrupts();

Settings
No Default

* In Disabling routine, enter the routine that disables all interrupts.

* In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

Click Ifl:ll:I to add a field and enter the function name.

Click Q to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, you must select the option, Configure multitasking
manually.

Tips
* The routine that you specify for the option disables preemption by all:
+ Noncylic entry points on page 1-112

* Cyclic tasks on page 1-114
Interrupts on page 1-117

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptable at all.

* Protection via disabling interrupts is conceptually different from protection via
critical sections.

1-121

1 Option Descriptions

1-122

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isrl () {
begin critical section();
x = 0;
end critical section();

}

void isr2 () {
x = 1;

}

void task () {
begin critical section();
X++;
end critical section();

}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the
operation x=1 in isr2. If the function begin critical section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

Command-Line Information

Parameter: -routine-disable-interrupts | —-routine-enable-interrupts
No Default

Value: function name

Example: polyspace-bug finder-nodesktop -sources file name -routine-
disable-interrupts atomic_section begins -routine-enable-interrupts
atomic_section ends

Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

See Also
Configure multitasking manually | Entry points (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file) | Data race |

Data race including atomic operations

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2017a

1-123

1 Option Descriptions

1-124

Critical section details (-critical-section-
begin -critical-section-end)

Specify functions that begin and end critical sections

Description

When verifying multitasking code, Polyspace considers that a critical section lies
between calls to a lock function and an unlock function.

lock () ;
/* Critical section code */
unlock () ;

Specify the lock and unlock function names for your critical sections (for instance,
lock () and unlock () in above example).

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-125 for other options you must also
enable.

Command line: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 1-126.

Why Use This Option

When a task my task calls a lock function my lock, other tasks calling my lock must
wait till my task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my task.

For instance, the operation var++ inmy taskl and my task2 cannot interrupt each
other.

int var;

Critical section details (-critical-section-begin -critical-section-end)

void my taskl () {
my lock();
var++;
my unlock();

}

void my task2() {
my lock();
var++;
my unlock();

}

The analysis uses the critical section information to look for concurrency defects such as
data race and deadlock. See “Concurrency Defects”.

Settings

No Default

Click I:II:II:I to add a field.

* In Starting routine, enter name of lock function.

* In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

Click IfI]:I to add a field and enter the function name.

Click EIE to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

1-125

1 Option Descriptions

1-126

Tips

+ For function calls that begin and end critical sections, Polyspace ignores the function

arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting routine: func begin

Starting routine: func begin

Ending routine: func end

Ending routine: func end

void my taskl () {
my lock(1l);
/* Critical section code */
my unlock(1l);

}

void my task2() {
my lock(2);
/* Critical section code */
my unlock(2);

}

* The functions that begin and end critical sections must be functions. For instance, if

you define a function-like macro:

#define init () num locks++

You cannot use the macro init () to begin or end a critical section.

Command-Line Information

Parameter: -critical-section-begin | -critical-section-end

No Default

Value: functionl:csl|[, function2:cs2[,...11]
Example: polyspace-bug finder-nodesktop -sources file name -critical-
section-begin func begin:csl -critical-section-end func_end:csl

See Also
Configure multitasking manually | Entry points (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file) | Data race |

Data race including atomic operations

Topics
“Specify Analysis Options”

“Set Up Multitasking Analysis Manually”

Temporally exclusive tasks (-temporal-exclusions-file)

Temporally exclusive tasks (-temporal-
exclusions-file)

Specify entry point functions that cannot execute concurrently

Description

Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-128 for other options you must also
enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 1-128.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

The analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See Data race.

Settings
No Default

Click I:II_II:I to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

1-127

1 Option Descriptions

1-128

Click I:II_II:I to add a field and enter the function names.

Click Q to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

* On each line, enter one group of temporally excluded tasks.

* Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file

No Default

Value: Name of temporal exclusions file

Example: polyspace-bug-finder-nodesktop -sources file name -temporal-
exclusions-file "C:\exclusions file.txt"

See Also
Configure multitasking manually | Entry points (-entry-points) |
Critical section details (-critical-section-begin -critical-section-

end) | Data race | Data race including atomic operations

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Check MISRA C:2004 (-misra?2)

Check MISRA C:2004 (-misra2)

Check for violation of MISRA C:2004 rules

Description

Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-131 for other options that you must
also enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 1-
131.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings

Default: required-rules

required-rules

Check required coding rules.

all-rules

Check required and advisory coding rules.

1-129

1 Option Descriptions

1-130

SQO0-subsetl

Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset?2

Check a subset of rules including SQO-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of

unproven results. For more information, see “Software Quality Objective Subsets (C:
2004)”.

custom

Specify coding rules to check. Click &J to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

+ Enter full path to the file in the space provided.

ctick LB] cticte T3 40 load the file.

Format of the custom file:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

Check MISRA C:2004 (-misra?2)

Dependencies

* This option is available only if you set Source code language (-lang) toCor C-
CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only . c
files.

* Ifyou set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subsetl. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

+ If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information

Parameter: -misra?2

Value: required-rules | all-rules | SQO-subsetl | SQO-subset2 | single-
unit-rules | system-decidable-rules | file

Default: required-rules

Example: polyspace-bug-finder-nodesktop -sources file name -misra?2
all-rules B

See Also

Generate results for sources and (-generate-results-for)

1-131

1 Option Descriptions

Topics

“Specify Analysis Options”

“Activate Coding Rules Checker”

“Select Specific MISRA or JSF Coding Rules”

“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“Software Quality Objective Subsets (C:2004)”

1-132

Check MISRA AC AGC (-misra-ac-agc)

Check MISRA AC AGC (-misra-ac-agc)

Check for violation of MISRA AC AGC rules

Description

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-135 for other options that you must
also enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 1-135.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings

Default: OBL-rules

OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.

1-133

1 Option Descriptions

all-rules
Check required, recommended and readability-related rules.
SQO-subsetl

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO0-subset?2

Check a subset of rules including SQ0-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC

AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

+ Enter full path to the file in the space provided.

Click . Click E to load the file.

Format of the custom file:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are

checked in the compilation phase of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc single-unit-rules in the field
Other.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that

1-134

Check MISRA AC AGC (-misra-ac-agc)

apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc system-decidable-rules in the
field Other.

Dependencies

* This option is available only if you set Source code language (-lang) toC or C-
CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only . c files.

+ Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

+ If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information

Parameter: -misra-ac-agc

1-135

1 Option Descriptions

1-136

Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subsetl | SQO-subset?2 |
single-unit-rules | system-decidable-rules | file

Default: OBL.-rules

Example: polyspace-bug-finder-nodesktop -sources file name -misra-ac-—
agc all-rules

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Analysis Options”

“Activate Coding Rules Checker”

“Select Specific MISRA or JSF Coding Rules”

“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“Software Quality Objective Subsets (AC AGC)”

Check MISRA C:2012 (-misra3)

Check MISRA C:2012 (-misra3)

Check for violations of MISRA C:2012 rules and directives

Description

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-139 for other options that you must
also enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 1-
140.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings
Default: mandatory-required

mandatory-required

Check for mandatory and required guidelines.

* Mandatory guidelines: Your code must comply with these guidelines.

* Required guidelines: You may deviate from these these guidelines. However, you
must complete a formal deviation record, and your deviation must be authorized.

1-137

1 Option Descriptions

1-138

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select

custom. To clear specific guidelines, click . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

mandatory
Check for mandatory guidelines.
CERT-rules

Check for a subset of coding rules that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

Check for a subset of coding rules that corresponds to CERT-C rules and
recommendations.

See “CERT C Coding Standard and Polyspace Results”.
IS0-17961

Check for a subset of coding rules that corresponds to the ISO/IEC TS 17961 coding
standard.

all
Check for mandatory, required, and advisory guidelines.
SQO0-subsetl

Check for only a subset of guidelines. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2012)”.

SQO0-subset?2

Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

Check MISRA C:2012 (-misra3)

custom

Specify guidelines to check. Click ﬁ] to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

+ Enter full path to the file in the space provided.

Ctick B3] crice T3 40 1oad the file.

Custom file format:

rule number offl|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

Dependencies

This option is available only if you set Source code language (-lang) toCor C-
CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only . c
files.

If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

1-139

1 Option Descriptions

1-140

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.
2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.
+ If you select the option single-unit-rules or system-decidable-rules and

choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early

in Analysis”.
* Polyspace Code Prover does not support checking of the following:

MISRA C:2012 Directive 4.13 and 4.14
+ MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
+ MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information

Parameter: -misra3

Value: mandatory | mandatory-required | CERT-rules | CERT-all | IS0O-17961
| a1l | SQO-subsetl | SQO-subset2 | single-unit-rules | system-decidable-
rules | file

Default: mandatory-required

Example: polyspace-bug-finder-nodesktop -lang ¢ -sources file name -
misra3 mandatory-required

See Also

Generate results for sources and (-generate-results-for)

Topics
“Specify Analysis Options”

Check MISRA C:2012 (-misra3)

“Activate Coding Rules Checker”

“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

1-141

1 Option Descriptions

1-142

Use generated code requirements (-misra3-agc-
mode)

Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-144 for other options that you must
also enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 1-144.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings

Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

¥ On (default for analyses from Simulink)

Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

Use generated code requirements (-misra3-agc-mode)

For analyses started from the Simulink plug-in, this option is the default value.
Category changed to Advisory

These rules are changed to advisory:

- 53

- 7.1

- 8.4,85,8.14

- 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
- 14.4,14.4

- 15.2,15.3

. 16.1,16.2, 16.3, 16.4, 16.5, 16.6, 16.7
- 20.8

Category changed to Readability

These guidelines are changed to readability:

+ Dir4.5

- 23,2425, 286, 2.7
- 5.9

- 72,73

+ 9.2,93,9.5

- 119

+ 13.3

 14.2

- 15.7

- 17.5,17.7,17.8
+ 185

+ 20.5

1-143

1 Option Descriptions

Dependency

To use this option, first select the Check MISRA C:2012 (-misra3) option.

Command-Line Information

Parameter: -misra3-agc-mode

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -misra3
all -misra3-agc-mode

See Also

Generate results for sources and (-generate-results-for) | Check MISRA
C:2012 (-misra3)

Topics

“Specify Analysis Options”
“Activate Coding Rules Checker”
“Polyspace MISRA C:2012 Checker”

1-144

Check custom rules (-custom-rules)

Check custom rules (-custom-rules)

Follow naming conventions for identifiers

Description

Define naming conventions for identifiers and check your code against them.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on

page 1-148.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings

¥ On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

+ Use the custom rules wizard:

1-145

1 Option Descriptions

1-146

Click . The New File window opens.

From the drop-down list Set the following state to all Custom C, select
off. Click Apply.

For every custom rule you want to check:

Select On'@,
In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter A1l struct fields must begin with s .
This message appears on the Result Details pane if:

* You specify the Pattern as s [A-Za-z0-9]+.

* A structure field in your code does not begin with s_.

In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified

pattern, you can enter s [A-Za-z0-9_]+. Polyspace reports violation
of rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance,
you can use the following expressions.

Expression Meaning
Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in
the set 0-9
["a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or
x? Matches 0 or 1 occurrence of x
52 Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

Check custom rules (-custom-rules)

(?!) [a-z0-9 1+ (?!), matches a text pattern that does not
start and end with two underscores.

int _ text; //Does not match

int text ; //Matches

[a-2z0-9]+ (uB|ul6|u32|s8|sl6]|s32) , matches a text pattern
that ends with a specific suffix.

int text ; //Does not match
int text s16; //Matches
int _text_s33; // Does not match

[a-z0-9]+ (u8|ul6|u32|s8|sl6|s32) (_b3| b8)?, matchesa
text pattern that ends with a specific suffix and an optional second
suffix.

int _text sl6; //Matches
int text sl6 b8; //Matches

For a complete list of regular expressions, see Perl documentation.

* Manually edit an existing custom coding rules file:

1 Open the file with a text editor.

2 For every custom rule you want to check, enter the following information in
adjacent lines.

a

Rule number, followed by on. For example:

4.3 on

The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s_

The text pattern starting with pattern=. For example:

pattern=s [A-Za-z0-9]

To use an existing coding rules file, enter the full path to the file in the field provided

or use] in the New File window to navigate to the file location.

"1 Off (default)

Polyspace does not check your code against custom naming conventions.

1-147

http://perldoc.perl.org/perlre.html#Regular-Expressions

1 Option Descriptions

Command-Line Information

Parameter: -custom-rules

Value: Name of coding rules file

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -custom-
rules "C:\Rules\myrules.txt"

See Also

Topics

“Specify Analysis Options”

“Activate Coding Rules Checker”
“Create Custom Coding Rules”
“Format of Custom Coding Rules File”
“Custom Coding Rules”

1-148

Effective boolean types (-boolean-types)

Effective boolean types (-boolean-types)

Specify data types that coding rule checker must treat as effectively Boolean

Description

Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type only if you have defined it through a typedef statement in your
source code.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-151 for other options that you must
also enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 1-151.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

+ MISRA C: 2004 and MISRA AC AGC

Rule Rule Statement
Number
12.6 Operands of logical operators, &s, | |, and !, should be effectively

Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the operand
is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

+ MISRA C: 2012

1-149

1 Option Descriptions

Rule Rule Statement

Number

10.1 on Operands shall not be of an inappropriate essential type

page 5-

141

10.3 on The value of an expression shall not be assigned to an object with a
page 5- narrower essential type or of a different essential type category
150

10.5 on The value of an expression should not be cast to an inappropriate
page 5- essential type
154

14.4 on The controlling expression of an if statement and the controlling
page 5- expression of an iteration-statement shall have essentially Boolean type.
225

16.70on |A switch-expression shall not have essentially Boolean type.
page 5-
263

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void funcl (void) ;
void func2 (void) ;

void func (myBool flag) {
if (flag)
funcl () ;

else
func2 () ;

Settings

No Default

Click I:II:II:I to add a field. Enter a type name that you want Polyspace to treat as Boolean.

1-150

Effective boolean types (-boolean-types)

Dependencies

This option is available only if you select Check MISRA AC AGC (-misra-ac-agc),
Check MISRA C:2004 (-misra2),or Check MISRA C:2012 (-misra3).

Command-Line Information

Parameter: -boolean-types

Value: typell, type2[,...]]

No Default

Example: polyspace-bug-finder-nodesktop -sources filename -misra?2
required-rules -boolean-types booleanl t,boolean2 t

See Also

Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Activate Coding Rules Checker”

“Specify Boolean Types”
“MISRA C:2004 and MISRA AC AGC Coding Rules”

1-151

1 Option Descriptions

1-152

Allowed pragmas (-allowed-pragmas)

Specify pragma directives for which MISRA C:2004 rule 3.4 must not be applied

Description

Specify pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ rule 16-6-1
must not be applied.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-153 for other options that you must
also enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 1-153.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click I:II_II:I to add a field. Enter the pragma name that you want Polyspace to ignore
during coding rule checking .

Allowed pragmas (-allowed-pragmas)

Dependencies

This option is enabled only if you select one of the following options:

¢ Check MISRA C:2004 (-misra?2)
* Check MISRA AC AGC (-misra-ac-agc).
* Check MISRA C++ rules (-misra-cpp)

Command-Line Information

Parameter: -allowed-pragmas

Value: pragmall, pragmaZ[,...]]

No Default

Example: polyspace-bug-finder-nodesktop -sources filename -misra-cpp
required-rules -allowed-pragmas pragma 01l,pragma 02

Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma 01l,pragma 02

See Also

Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) |
Check MISRA C++ rules (-misra-cpp)

Topics

“Activate Coding Rules Checker”

“MISRA C:2004 and MISRA AC AGC Coding Rules”
“MISRA C++ Coding Rules”

1-153

1 Option Descriptions

1-154

Check MISRA C++ rules (-misra-cpp)

Check for violations of MISRA C++ rules

Description

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-155 for other options that you must
also enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
1-156.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings

Default: required-rules

required-rules
Check required coding rules.
all-rules

Check required and advisory coding rules.

Check MISRA C++ rules (-misra-cpp)

SQO0-subsetl

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset?2

Check a subset of rules including SQ0O-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click ﬁ] to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

+ Enter full path to the file in the space provided.

Ctick B3] crice T3 40 Toad the file.

Format of the custom file:

<rule number> off|on
Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes
15-0-2 on # rule 15-0-2: exception handling

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only . cpp
files.

1-155

1 Option Descriptions

Command-Line Information

Parameter: -misra-cpp

Value: required-rules | all-rules | SQO-subsetl | SQO-subset2 | file
Default: required-rules

Example: polyspace-bug-finder-nodesktop -sources file name -misra-cpp
all-rules B

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Analysis Options”

“Activate Coding Rules Checker”

“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C++ Checker”

“Software Quality Objective Subsets (C++)”
“MISRA C++ Coding Rules”

1-156

Check JSF C++ rules (-jsf-coding-rules)

Check JSF C++ rules (-jsf-coding-rules)

Check for violations of JSF C++ rules

Description

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-158 for other options that you must
also enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line
Information” on page 1-159.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.
After analysis, the Results List pane lists the coding rule violations. On the Source

pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings

Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

1-157

1 Option Descriptions

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

custom

Specify coding rules to check. Click M to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

+ Enter full path to the file in the space provided.

Click \Ed_'tj Click 3 to load the file.

Format of the custom file:

<rule number> off|on
Use # to enter comments in the file. For example:

67 off # rule 67: classes
202 on # rule 202: expressions

Tips
+ If your project uses a setting other than iso for Compiler (-compiler), some rules

might not be completely checked. For example, AV Rule 8: “All code shall conform to
ISO/TEC 14882:2002(E) standard C++.”

Dependency

This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only . cpp files.

1-158

Check JSF C++ rules (-jsf-coding-rules)

Command-Line Information

Parameter: -jsf-coding-rules

Value: shall-rules | shall-will-rules | all-rules | file

Default: shall-rules

Example: polyspace-bug-finder-nodesktop -sources file name -jsf-
coding-rules all-rules

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Analysis Options”

“Activate Coding Rules Checker”

“Select Specific MISRA or JSF Coding Rules”
“Polyspace JSF C++ Checker”

“JSF C++ Coding Rules”

1-159

1 Option Descriptions

1-160

Calculate code metrics (-code-metrics)

Compute and display code complexity metrics

Description

Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Code Metrics”.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 1-161.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see “Review Code Metrics”.

Settings

¥ On

Polyspace computes and displays code complexity metrics on the Results List pane.

Calculate code metrics (-code-metrics)

"1 Off (default)

Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

* In Bug Finder, disable checking of defects. See Find defects (-checkers).

* In Code Prover, run verification upto the Source Compliance Checking phase. See
Verification level (-to).

Command-Line Information

Parameter: -code-metrics

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -code-
metrics

1-161

1 Option Descriptions

1-162

Find defects (-checkers)

Enable or disable defect checkers

Description

This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option

User interface: In your project configuration, the option is on the Bug Finder
Analysis node.

Command line: Use the option -checkers. See “Command-Line Information” on page
1-163.

Why Use This Option

The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings

Default: default

default

A subset of defects defined by the software. For information on which defects are
default, refer to the individual defect reference pages.

all
All defects.

Find defects (-checkers)

CWE
A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
CERT-rules
A subset of defects that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

A subset of defects that corresponds to CERT-C rules and recommendations.

See “CERT C Coding Standard and Polyspace Results”.
IS0-17961
A subset of defects that corresponds to ISO/IEC TS 17961 coding standard.

See “ISO/IEC TS 17961 Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is

provided in matlabroot\polyspace\resources. Here, matlabroot is the MATLAB
installation folder, such as C: \Program Files\MATLAB\R2017a.

Command-Line Information

Regardless of order, the shell script processes the —-checkers option, and then -
disable-checkers option.

Refer to the individual defect reference pages for the command-line parameters values.
Parameter: -checkers

1-163

1 Option Descriptions

1-164

Value: default | all | CWE | CERT-rules | CERT-all | ISO-17961 | defect
group | defect parameters

Default: default

Parameter: -disable-checkers

Value: defect group | defect parameter

Example 1: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,dataflow -disable-checkers FLOAT ZERO DIV

Example 2: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead code

See Also
“Defects”

Topics
“Specify Analysis Options”
“Bug Finder Defect Groups”

Class (-class-analyzer)

Class (-class-analyzer)

Specify classes that you want to verify

Description

This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-166 for other options that you must
also enable.

4

Command line: Use the option -class-analyzer. See “Command-Line Information’
on page 1-166.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated

main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings

Default: a11

1-165

1 Option Descriptions

1-166

all

Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

none
The generated main cannot call any class method.

custom

Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is setto CPP.

* Verify module or library (-main-generator) is selected.

Tips

If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information

Parameter: -class-analyzer

Value: all | none | custom=classl[,class2,...]

Default: a11

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass?2

See Also

Verify module or library (-main-generator) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents

Class (-class-analyzer)

only (-class-only) | Skip member initialization check (-no-
constructors-init-check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1-167

1 Option Descriptions

1-168

Functions to call within the specified classes (-
class-analyzer-calls)

Specify class methods that you want to verify

Description

This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-170 for other options that you must
also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-170.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings

Default: unused

Functions to call within the specified classes (-class-analyzer-calls)

all

The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all
The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent
class.

unused

The generated main calls public and protected methods that are not called in the
code.

unused-public

The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused

The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public

The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom

The generated main calls the methods that you specify.

Enter function names or choose from a list.

Click IfI]:I to add a field and enter the function name.

Click dlﬁ to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod (int).

1-169

1 Option Descriptions

1-170

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Dependencies

You can use this option only if:

* Source code language (-lang) 1s setto CPP.

* Verify module or library (-main-generator) is selected.

Command-Line Information

Parameter: -class-analyzer-calls

Value: a1l | all-public | inherited-all | inherited-all-public | unused |
unused-public | inherited-unused | inherited-unused-public |
custom=methodl[,method2, ...]

Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass?2 -class-analyzer-
calls unused-public

See Also

Verify module or library (-main-generator) | Class (-class-analyzer) |
Analyze class contents only (-class-only) | Skip member initialization
check (-no-constructors-init-check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

Analyze class contents only (-class-only)

Analyze class contents only (-class-only)

Do not analyze code other than class methods

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-172 for other options that you must
also enable.

Command line: Use the option —-class-only. See “Command-Line Information” on
page 1-172.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use the following options to specify the class methods that the generated main must call:

* Class (-class-analyzer)
* Functions to call within the specified classes (-class-analyzer-
calls)

Unless a class method is called directly or indirectly from main, the software does not
analyze the method. Use this option to specify that only the class methods must be
analyzed and not other functions.

Using these three options, you can check your classes for robustness against run-time
errors.

1-171

1 Option Descriptions

Settings

¥/ On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

Off (default)

Polyspace verifies functions out of class scope in addition to class methods.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is setto CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Tips
Use this option:

+ For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

* In case of scaling.

Command-Line Information

Parameter: -class-only
Default: Off

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) |
Functions to call within the specified classes (-class-analyzer-

1-172

Analyze class contents only (-class-only)

calls) | Skip member initialization check (-no-constructors-init-
check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1-173

1 Option Descriptions

1-174

Initialization functions (-functions-called-
before-main)

Specify functions that you want the generated main to call ahead of other functions

Description

This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-175 for other options that you must
also enable.

Command line: Use the option -functions-called-before-main. See “Command-
Line Information” on page 1-176.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-
calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

Initialization functions (- functions-called-before-main)

Click Ifl:ll:I to add a field and enter the function name.

Click 'ﬂlﬁ to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func (int) and func (double).

int func(int x) {
return(x * 2);

}

double func (double x) {
return(x * 2);

}
For C++, if the function is:

* A class method: The generated main calls the class constructor before calling this
function.

+ Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :init (int). If the

function does not have a parameter, use an empty parenthesis, for instance,
myClass::init ().

Dependencies

This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips

Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

1-175

1 Option Descriptions

1-176

Command-Line Information

Parameter: -functions-called-before-main

Value: functionl|[, function2[,...]1]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myfunc

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myClass::init (int)

See Also

Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Functions to call (-main-
generator-calls) | Class (-class-analyzer) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

Verify whole application

Verify whole application

Stop verification if sources files are incomplete and do not contain a main function

Description

This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 1-178.

Settings

2 On
Polyspace verification stops if it does not find a main function in the source files.
Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file polyspace main.c that
contains a main function.

1-177

1 Option Descriptions

1-178

Command-Line Information

Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also

Verify module or library (-main-generator)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

Main entry point (-main)

Main entry point (-main)

Specify a Microsoft Visual C++ extensions of main

Description

This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-180 for other options that you must
also enable.

Command line: Use the option -main. See “Command-Line Information” on page 1-180.

Settings

Default: tmain

_tmain

Use tmain as entry point to your code.
wmain

Use wmain as entry point to your code.
_tWinMain

Use twWinMain as entry point to your code.
wWinMain

Use wiWinMain as entry point to your code.

1-179

1 Option Descriptions

WinMain
Use WinMain as entry point to your code.
Dl11Main

Use D11Main as entry point to your code.

Dependencies

This option is enabled only if you:

* Set Source code language (-lang) to CPP.
+ Set Target operation system (-target) to Visual.

+ Select Verify whole application

Command-Line Information

Parameter: -main

Value: tmain | wmain | tWinMain | wWinMain | WinMain | D11Main
Example: polyspace-code-prover-nodesktop -sources file name -0S-
target visual -main tmain

See Also

Verify module or library (-main-generator)

1-180

Functions to call (-main-generator-calls)

Functions to call (-main-generator-calls)

Specify functions that you want the generated main to call after the initialization
functions

Description

This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-182 for other options that you must
also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-183.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option ITnitialization functions (-functions-—
called-before-main) to specify which functions the generated main must call. Unless
a function is called directly or indirectly from main, the software does not analyze the
function.

Settings

Default: unused

1-181

1 Option Descriptions

1-182

none
The generated main does not call any function.
unused

The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify.

Enter function names or choose from a list.

Click Ifl:ll:I to add a field and enter the function name.
Click EIE to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod (int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Dependencies

This option is available only if you select Verify module or library (-main-
generator).

Tips
* Select unused when you use Code Prover Verification > Verify files
independently.

+ If you want the generated main to call an inlined function, select custom and specify
the name of the function.

* To verify a multitasking application without a main, select none.

Functions to call (-main-generator-calls)

* The generated main can call the functions in arbitrary order. If you want to call your
functions in a specific order, manually write a main function to call them.

Command-Line Information

Parameter: -main-generator-calls

Value: none | unused | all | custom=functionl[, function2[,...]]
Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-calls all

See Also

Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to
call within the specified classes (-class-analyzer-calls) | Analyze
class contents only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1-183

1 Option Descriptions

1-184

Variables to initialize (-main-generator-
writes-variables)

Specify global variables that you want the generated main to initialize

Description

This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-185 for other options that you must
also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-185.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

* Ccode —public
+ C++ Code —uninit

Variables to initialize (-main-generator-writes-variables)

uninit

C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.
public

The generated main initializes all global variables except those declared with
keywords static and const.

all

The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click I:II:II:I to add
a field. Enter a global variable name.

Dependencies

You can use this option only if the following are true:

* Your code does not contain a main function.

* Verify module or library (-main-generator) is selected.

Command-Line Information

Parameter: -main-generator-writes-variables

Value: uninit | none | public | all | custom=variablel[, variable2[,...]]
Default: (C) public | (C++) uninit

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-writes-variables all

1-185

1 Option Descriptions

1-186

See Also

Verify module or library (-main-generator) | Initialization functions
(-functions-called-before-main) | Functions to call (-main-generator-
calls) | Class (-class-analyzer) | Functions to call within the
specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

Skip member initialization check (-no-constructors-init-check)

Skip member initialization check (-no-
constructors-init-check)

Do not check if class constructor initializes class members

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-188 for other options that you must
also enable.

Command line: Use the option —-no-constructors-init-check. See “Command-Line
Information” on page 1-188.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings

¥/ On

Polyspace does not check whether each class constructor initializes all class
members.

Off (default)

Polyspace checks whether each class constructor initializes all class members. It uses
the functions check NIV () and check NIP () inthe generated main to perform
these checks. It checks for initialization of:

1-187

1 Option Descriptions

1-188

* Integer types such as int, char and enum, both signed or unsigned.
* Floating-point types such as float and double.

* Pointers.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) 1s setto CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check

Default: Off

See Also

Verify module or library (-main-generator) | Class (-class-analyzer)

Topics
“Specify Analysis Options” (Polyspace Code Prover)

Verify files independently (-unit-by-unit)

Verify files independently (-unit-by-unit)

Verify each source file independently of other source files

Description

This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each
file is verified individually, independent of other files in the module. Verification results
can be viewed for the entire project or for individual files.

After you open the verification result for one file, you can see a summary of results for all
files on the Dashboard pane. You can open the results for each file directly from this

summary table. For more information, see “Run File-by-File Local Verification”
(Polyspace Code Prover).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-190 for other options that you must
also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 1-190.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

1-189

1 Option Descriptions

1-190

Settings

¥/ On
Polyspace creates a separate verification job for each source file.
Off (default)

Polyspace creates a single verification job for all source files in a module.

Dependencies

This option is enabled only if you select Verify module or library (-main-
generator).

Tips
+ If you perform a file by file verification, you cannot specify multitasking options.

+ If your verification for the entire project takes very long, perform a file by file
verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

* You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.

2 Select Reporting > Run Report. Before generating the report, select the option
Generate a single report including all unit results.

Command-Line Information
Parameter: -unit-by-unit
Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit

Verify files independently (-unit-by-unit)

See Also

Common source files (-unit-by-unit-common-source)

Topics

“Run File-by-File Local Verification” (Polyspace Code Prover)

“Run File-by-File Remote Verification” (Polyspace Code Prover)
“Multiple File Error in File by File Verification” (Polyspace Code Prover)

1-191

1 Option Descriptions

1-192

Common source files (-unit-by-unit-common-
source)

Specify files that you want to include with each source file during a file by file
verification

Description

This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-193 for other options that you must
also enable.

Command line: Use the option —unit-by-unit-common-source. See “Command-Line
Information” on page 1-193.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by
file verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the
same function, use this option to specify a file that contains the function definition or a
function stub. Otherwise, Polyspace uses its own stubs for functions that are called but
not defined in the source files. The assumptions behind the Polyspace stubs can be
broader than what you want, leading to orange checks.

Common source files (-unit-by-unit-common-source)

Settings

No Default

Click I:II_II:I to add a field. Enter the full path to a file. Otherwise, use the - button to
navigate to the file location.

Dependencies

This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information

Parameter: —-unit-by-unit-common-source

Value: filel[, file2[,...]]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also

Verify files independently (-unit-by-unit)

Topics
“Run File-by-File Local Verification” (Polyspace Code Prover)
“Run File-by-File Remote Verification” (Polyspace Code Prover)

1-193

1 Option Descriptions

1-194

Verify model generated code (-main-generator)

Specify that a main function must be generated if it is not present in source files

Description

This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information”
on page 1-195.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

+ Initializes variables specified by Parameters (-variables-written-before-
loop).

+ Calls the functions specified by Initialization functions (-functions-
called-before-loop).

The main then performs the following functions in the loop:

Verify model generated code (-main-generator)

+ Calls the functions specified by Step functions (-functions-called-in-
loop).

* Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information

Parameter: -main-generator

Default: On

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-195

1 Option Descriptions

1-196

Initialization functions (-functions-called-
before-1loop)

Specify functions that the generated main must call before the cyclic code loop

Description

This option is available only for model- generated code.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-before-loop. See “Command-
Line Information” on page 1-196.

Settings

No Default

Click I:II_II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :init (int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init ().

Command-Line Information

Parameter: -functions-called-before-loop

Initialization functions (- functions-called-before-loop)

No Default

Value: functionl|[, function2[,...]1]

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-before-loop myfunc

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Step functions (-functions-called-in-loop) |
Termination functions (-functions-called-after-loop)

Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-197

1 Option Descriptions

1-198

Step functions (-functions-called-in-1loop)

Specify functions that the generated main must call in the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-in-1loop. See “Command-Line
Information” on page 1-199.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click I:II_II:I to add a field. Enter
function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod (int).

Step functions (- functions-called-in-1loop)

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Tips

If you have specified a function for the option Initialization functions or Termination
functions, to call it inside the cyclic code, use custom and specify the function name.

Command-Line Information

Parameter: -functions-called-in-loop

Value: none | all | custom=functionl[, function2[,...]]

Default: none

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-in-loop all

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Termination functions (-functions-called-after-loop)

Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-199

1 Option Descriptions

1-200

Termination functions (- functions-called-
after-loop)

Specify functions that the generated main must call after the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-after-loop. See “Command-
Line Information” on page 1-201.

Settings

No Default

Click I:II_II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod (int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Tips

+ If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Termination functions (-functions-called-after-loop)

Command-Line Information

Parameter: -functions-called-after-loop

No Default

Value: functionl|[, function2[,...]1]

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-after-loop myfunc

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop)

Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-201

1 Option Descriptions

1-202

Parameters (-variables-written-before-
loop)

Specify variables that the generated main must initialize before the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-before-loop. See “Command-
Line Information” on page 1-203.

Settings

Default: none

none
The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

Parameters (-variables-written-before-1loop)

custom

The generated main only initializes variables that you specify. Click I:II:II:I to add a
field. Enter variable name. For C++ class members, use the syntax
className: :variableName.

Command-Line Information

Parameter: -variables-written-before-loop

Value: none | all | custom=variablel[,variable2[,...]1]

Default: public

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -variables-written-before-loop all

See Also

Inputs (-variables-written-in-loop) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-
loop) | Termination functions (-functions-called-after-loop)

Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-203

1 Option Descriptions

Inputs (-variables-written-in-loop)

Specify variables that the generated main must initialize in the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have anyvalue allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-in-loop. See “Command-Line
Information” on page 1-205.

Settings

Default: none

none
The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom
The generated main only initializes variables that you specify. Click I:II_II:I to add a

field. Enter variable name. For C++ class members, use the syntax
className: :variableName.

1-204

Inputs (-variables-written-in-loop)

Command-Line Information

Parameter: -variables-written-in-loop

Value: none | all | custom=variablel[,variable2[,...]1]

Default: none

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -variables-written-in-loop all

See Also

Parameters (-variables-written-before-loop) | Initialization functions
(-functions-called-before-loop) | Step functions (-functions-called-
in-loop) | Termination functions (-functions-called-after-loop)
Topics

“Specify Analysis Options”

“Configure Simulink Model”

“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

1-205

1 Option Descriptions

1-206

Verify module or library (-main-generator)

Generate a main function if source files are modules or libraries that do not contain a
main

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information”
on page 1-208.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires
a main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

Verify module or library (-main-generator)

Settings

@ On (default)
Polyspace generates a main function if it does not find one in the source files. The
generated main:
1 Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

2 Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:
+ Initializes all global variables except those declared with keywords const and

static.

+ In all possible orders, calls all functions that are not called anywhere in the
source files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

Off

Polyspace stops if a main function is not present in the source files.

Tips

+ If amain function is present in your source files, the verification uses that main
function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.

+ If you specify multitasking options, the verification ignores your specifications for
main generation. Instead, the verification introduces an empty main function.

1-207

1 Option Descriptions

1-208

For more information on the multitasking options, see “Verify Multitasking
Applications” (Polyspace Code Prover).

Command-Line Information

Parameter: -main-generator

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-1loop)

Topics

“Specify Analysis Options”

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)

Assume that volatile qualified structure fields can have all possible values at any
point in code

Description

This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option —-consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 1-212.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

1-209

1 Option Descriptions

Settings

1 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field vall can have all
values allowed for the int type at any point in the code.

struct myStruct {
volatile int wvall;
int val2;

b

Even if you write a specific value to vall and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;

myStructInstance.vall = 1;

assert (myStructInstance.vall == 1); // Assertion can fail
"1 Off (default)

The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field vall.

struct myStruct {
volatile int wvall;
int val2;

b

If you write a specific value to vall and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.vall = 1;
assert (myStructInstance.vall == 1); // Assertion passes

Tips

+ If your volatile fields do not represent values read from hardware and you do not
expect their values to change between successive operations, disable this option. You

1-210

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
volatile int fieldl;

int field2;
}i
Color Result Without Option Result With Option
Without
Option
Green void main () { void main () {
struct myStruct structval; struct myStruct structvVal;
structval.fieldl = 1; structVal.fieldl = 1;
assert (structVal.fieldl == 1); assert(structVal.fieldl ==1);
} }
Red void main () { void main () {
struct myStruct structval; struct myStruct structval;
structVal.fieldl = 1; structVal.fieldl = 1;
assert (structVal.fieldl != 1); assert(structvVal.fieldl !=1);
} }
Gray void main () { void main () {
struct myStruct structVal; struct myStruct structVal;
structval.fieldl = 1; structval.fieldl = 1;
if (structval.fieldl != 1) if (structval.fieldl != 1)
{ {
/* Perform operation */ /* Perform operation */
} }
} }

* In C++ code, the option also applies to class members.

1-211

1 Option Descriptions

Command-Line Information

Parameter: -consider-volatile-qualifier-on-fields

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -
consider-volatile-qualifier-on-fields

See Also

Topics
“Specify External Constraints” (Polyspace Code Prover)

Introduced in R2016b

1-212

Float rounding mode (-float-rounding-mode)

Float rounding mode (-float-rounding-mode)

Specify rounding modes to consider when determining the results of floating point
arithmetic

Description

This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line
Information” on page 1-216.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for
instance, using the flag -mfpmath=387), use the rounding mode all. However, for your
Polyspace analysis results to agree with run-time behavior, you must prevent use of
extended precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all
rounding modes are considered when you specify all, you can have many orange
Overflow checks resulting from overapproximation.

1-213

http://www.cplusplus.com/reference/cfenv/fesetround/

1 Option Descriptions

1-214

Settings

Default: to-nearest

to-nearest

The verification assumes the round-to-nearest mode.

all

The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips

The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754
standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover limitations.pdf in matlabroot\polyspace\verifier

\code prover. Here, matlabroot is the MATLAB installation folder, for instance,
C:\Program Files\MATLAB\R2017b.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as —-ffloat-store. For your Polyspace analysis, use all for rounding
mode to account for double rounding.

The Overflow check uses the rounding modes that you specify. For instance, the

following table shows the difference in the result of the check when you change your
rounding modes.

Float rounding mode (-float-rounding-mode)

Rounding mode: to-nearest

Rounding mode: a1l

If results of floating-point operations are
rounded to nearest values:

* In the first addition operation, eps1 is
just large enough that the value
nearest to FLT MAX + epslis
greater than FLT MAX. The Overflow
check is red.

* In the second addition operation, eps?2
is just small enough that the value
nearest to FLT MAX + eps2 is
FLT MAX. The Overflow check is
green.

#include <float.h>
#define epsl 0x1pl03
#define eps2 0x0.FFFFFFpl03

float func(int ch) {

float left op = FLT MAX;
float right op 1 = epsl, \
right op 2 = eps2;
switch (ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);
default:
return 0;

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

* In the first addition operation, in to-
nearest mode, the value nearest to
FLT MAX + epsl is greater than
FLT MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT MAX, so the
addition does not overflow. Combining
these two rounding modes, the
Overflow check is orange.

* In the second addition operation, in to-
nearest mode, the value nearest to
FLT MAX + eps2is FLT MAX, so the
addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT MAX, so the
addition overflows. Combining these
two rounding modes, the Overflow
check is orange.

#include <float.h>
#define epsl 0x1pl03
#define eps2 0x0.FFFFFFpl03

float func(int ch) {
float left op FLT MAX;
float right op 1 epsl, \
right op 2 eps2;
switch (ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);
default:

1-215

1 Option Descriptions

Rounding mode: to-nearest Rounding mode: a1l

return 0;

}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information

Parameter: -float-rounding-mode

Value: to-nearest | all

Default: to-nearest

Example: polyspace-code-prover-nodesktop -sources file name -float-
rounding-mode all

See Also

Overflow

Introduced in R2016a

1-216

Respect types in fields (-respect-types-in-fields)

Respect types in fields (-respect-types-in-
fields)

Do not cast nonpointer fields of a structure to pointers

Description

This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 1-218.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings

¥/ On

The verification assumes that structure fields not declared initially as pointers will
not be cast to pointers later.

1-217

1 Option Descriptions

1-218

Code with option off

Code with option on

struct {
unsigned int x1;
unsigned int x2;
} S;

void funct (void) {

int var, *tmp;
S.x1 = &var;

tmp = (int*)S.x1;
*tmp = 1;

assert (var==1) ;

}

In this example, the fields of S are

pointer. With the option turned off,
Polyspace allows the cast.

declared as integers but S.x1 is cast to a

struct {
unsigned int x1;
unsigned int x2;
} S;

void funct (void) {

int var, *tmp;
S.x1 = &var;
tmp = (int*)S.x1;

*tmp = 1;
assert (var==1) ;

}

In this example, the fields of S are
declared as integers but S.x1 is cast to a
pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces a
red Non-initialized local variable
error when var is read.

"1 Off (default)

The verification assumes that structure fields can be cast to pointers even when they

are not declared as pointers.

Command-Line Information

Parameter: -respect-types-in-fields

Default: Off

See Also

Respect types in global variables
initialized local variable

(-respect-types-in-globals) | Non-

Respect types in global variables (-respect-types-in-globals)

Respect types in global variables (-respect-
types-in-globals)

Do not cast nonpointer global variables to pointers

Description

This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line
Information” on page 1-220.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings

¥ On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

Off (default)

The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

1-219

1 Option Descriptions

1-220

Tips

If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to

pointers.

For instance, in the following example, when you select the option, the results have one

less orange check and one more red check.

Code with option off

Code with option on

int global;

void main (void) {
int local;
global = (int) &local;
(int)global = 5;
assert (local==5);

}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;

void main (void) {
int local;
global = (int)&local;
(int)global = 5;
assert (local==5);

}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of 1ocal through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information

Parameter: -respect-types-in-globals

Default: Off

See Also

Respect types in fields
local wvariable

(-respect-types-in-fields) | Non-initialized

Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)

Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description

This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

* Global or extern pointers.
* Pointers returned from stubbed functions.
A function is stubbed if your code does not contain the function definition or you

override a function definition by using the option Functions to stub (-
functions-to-stub).

+ Pointer parameters of functions whose calls are generated by the software.
A function call is generated if you verify a module or library and the module or library

does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 1-224.

1-221

1 Option Descriptions

1-222

Why Use This Option

Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings

¥ On
The verification considers that environment pointers can have a NULL value.
Off (default)

The verification considers that environment pointers:

+ Cannot have a NULL value.

* Points within allowed bounds.

Tips

+ Enable this option during the integration phase. In this phase, you provide complete
code for verification. Even if an orange check originates from external sources, you are
likely to place protections against unsafe pointers from such sources. For instance, if
you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

+ If you enable this option, the number of orange checks in your code might increase.

Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

Environment Pointers Safe Environment Pointers Unsafe

The Illegally dereferenced pointer The Illegally dereferenced pointer
check is green. The verification assumes |check is orange. The verification assumes
that env_ptr is not NULL and any that env_ptr can be NULL.

dereference is within allowed bounds. The
verification assumes that the result of the
dereference is full range. For instance, in
this case, the return value has the full
range of type int.

int func (int *env ptr) {
return *env ptr;

}

int func (int *env ptr) {
return *env ptr;

}

If you enable this option, the number of gray checks might decrease.
Environment Pointers Safe Environment Pointers Unsafe

The verification assumes that env_ptr is |The verification assumes that env_ptr
not NULL. The if condition is always can be NULL. The i f condition is not
true and the else block is unreachable. |always true and the else block can be

reachable.
#include <stdlib.h>
int func (int *env_ptr) { #include <stdlib.h>
if (env_ptr!=NULL) int func (int *env_ptr) {
return *env_ptr; if (env_ptr!=NULL)
else return *env ptr;
return 0; else B
} return 0;

}

Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “Constraints” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not
Null, or Maybe Null. Depending on the Init Mode, you can either override the
global specification for all environment pointers or not.

+ Ifyou set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

1-223

1 Option Descriptions

1-224

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

+ If you set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

+ If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:
int*** stub (void) ;

void func2 () {
int ***ptr = stub();
int **ptr2 = *ptr;
int *ptr3 = *ptr2;

Command-Line Information

Parameter: -stubbed-pointers-are-unsafe

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -stubbed-
pointers—-are-unsafe

See Also

Constraint setup (-data-range-specifications)

Topics
“Specify External Constraints” (Polyspace Code Prover)
“Constraints” (Polyspace Code Prover)

Introduced in R2016b

Allow negative operand for left shifts (-allow-negative-operand-in-shift)

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)

Allow left shift operations on a negative number

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-226.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on
left shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings

¥/ On

The verification allows shift operations on a negative number, for instance, -2 << 2.

1-225

1 Option Descriptions

Off (default)

If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift

Default: Off

See Also

Invalid shift operations

1-226

Consider non finite floats (-allow-non-finite-floats)

Consider non finite floats (-allow-non-finite-
floats)

Enable a verification mode that incorporates infinities and NaNs

Description

This option affects a Code Prover analysis only.

Enable a verification mode that incorporates infinities and NaNs for floating point
operations.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option ~allow-non-finite-floats. See “Command-Line
Information” on page 1-230.

Why Use This Option

By default, the verification does not incorporate infinities and NaNs. For instance, the
verification terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinity.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

* Infinities (-check-infinite):Usewarn-first.

1-227

1 Option Descriptions

* NaNs (-check-nan):Usewarn-first.

Settings

Y| On

The verification allows infinities and NaNs. For instance, in this mode:

* The verification assumes that floating-point operations can produce results such
as infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur.

* The verification assumes that floating-point variables with unknown values can
have any value allowed by their type, including infinite or NaN. Floating-point
variables with unknown values include volatile variables and return values of
stubbed functions.

Off (default)
The verification does not allow infinities and NaNs. For instance, in this mode:
+ The verification produces a red check on a floating-point operation that produces
an infinity or a NaN as the only possible result on all execution paths. The

verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

* The verification assumes that floating-point variables with unknown values are
full-range but finite.

Tips

* The IEEE 754 Standard allows special quantities such as infinities and NaN so that
you can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

1-228

Consider non finite floats (-allow-non-finite-floats)

For instance, if a division results in infinity, in your code, you specify an
alternative action. Therefore, you do not want the verification to highlight division

operations that result in infinity.

+ If your compiler supports infinities and NaNs but you are not sure if you account
for them explicitly in your code, use this option so that the verification
incorporates infinities and NaNs. Use the options —~check-nan and -check-
infinite with argument warn so that the verification highlights operations that
result in infinities and NaNs, but does not stop the execution thread.

+ If you select this option, the number and type of checks in your code can change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.

Infinities and NaNs Not Allowed

Infinities and NaNs Allowed

Polyspace produces a Division by zero
error and stops verification.

double func (void) {
double x=1.0/0.0;
double y=1.0/x;
double z=x-x;
return z;

If you select this option, Polyspace does
not check for a Division by zero error.

double func (void) {
double x=1.0/0.0;
double y=1.0/x;
double z=x-x;
return z;

}

The verification assumes that dividing by
zero results in:

* Value of x equal to Inf

* Value of y equal to 0.0

* Value of z equal to NaN

In your verification results in the
Polyspace user interface, if you place your
cursor on y and z, you can see the

nonfinite values Inf and NaN respectively
in the tooltip.

* You cannot run the Automatic Orange Tester if you incorporate non-finites in your

verification.

1-229

1 Option Descriptions

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off

See Also

Infinities (-check-infinite) | NaNs (-check-nan) | Division by zero |
Overflow | Invalid shift operations | Invalid use of standard library
routine

Topics

“Specify Analysis Options” (Polyspace Code Prover)

Introduced in R2016a

1-230

Infinities (-check-infinite)

Infinities (-check-infinite)

Specify how to handle floating-point operations that result in infinity

Description

This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-233 for other options you must also enable.

Command line: Use the option -check-infinite. See “Command-Line Information”
on page 1-233.

Why Use This Option

Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis
does not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow

The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
double x=1.0/0.0;

1-231

1 Option Descriptions

1-232

return x;

}

warn-first

The verification produces a check on the operation. The check determines if the
result of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for
infinity.
double func (void) {

double x=1.0/0.0;

return x;

}

Even though the Overflow check on the / operation is red, the verification
continues. For instance, a green Non-initialized local variable check appears on x
in the return statement.

forbid

The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func (void) {
double x=1.0/0.0;
return x;

}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the
return statement.

Infinities (-check-infinite)

Dependencies

To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information

Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -check-
infinite forbid

See Also
Polyspace Analysis Options

Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Introduced in R2016a

1-233

1 Option Descriptions

NaNs (-check-nan)

Specify how to handle floating-point operations that result in NaN

Description

This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-236 for other options you must also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page
1-236.

Why Use This Option

Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis
does not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow

The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
double x=1.0/0.0;

1-234

NaNs (-check-nan)

double y=x-x;
return y;

}

warn-first

The verification produces a check on the operation. The check determines if the
result of the operation is NaN when the operands themselves are not NaN. For
instance, the check flags the operation vall + val2 only if the result can be NaN
when both vall and val2 are not NaN. The verification does not terminate the
execution thread that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
double x=1.0/0.0;
double y=x-x;
return y;

}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid

The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {

double x=1.0/0.0;
double y=x-x;

1-235

1 Option Descriptions

1-236

return y;

}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies

To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan

Value: allow | warn-first | forbid
Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -check-
nan forbid

See Also

Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Introduced in R2016a

Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)

Allow arithmetic on pointer to a structure field so that it points to another field

Description

This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-238 for other options you must also enable.

Command line: Use the option —allow-ptr-arith-on-struct. See “Command-Line
Information” on page 1-238.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can use that pointer to access another structure field.

Settings

¥/ On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red T1legally
dereferenced pointer check:

vold main (void) {
struct S {char a; char b; int c;} x;

1-237

1 Option Descriptions

1-238

char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.Db

}

Off (default)

A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips

* The verification does not allow a pointer with negative offset values. This behavior
occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

Dependency

This option is available only if you set Source code language (-lang) toC.

Command-Line Information

Parameter: -allow-ptr-arith-on-struct

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -allow-
ptr-arith-on-struct

See Also

Allow incomplete or partial allocation of structures (-size-in-
bytes) | Illegally dereferenced pointer

Detect stack pointer dereference outside scope (-detect-pointer-escape)

Detect stack pointer dereference outside scope (-
detect-pointer-escape)

Find cases where a function returns a pointer to one of its local variables

Description

This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The

dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option ~detect-pointer-escape. See “Command-Line
Information” on page 1-241.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings

¥/ On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if
you are accessing a variable outside its scope through the pointer. The check is:

1-239

1 Option Descriptions

* Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptr is
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

* Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

* Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2 (int *ptr) {
*ptr = 0;
}

int* funcl (void) {
int ret = 0;
return &ret ;
}
void main (void) {
int* ptr = funcl() ;
func2 (ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

i Tllegally dereferenced pointer

Error: pointer is outside its bounds
This check may be a path-related issue, which is not dependent on input values

Dereference of parameter 'ptr' (pointer to int 32, size: 32 bits):
Pointer is not null.
Points to 4 bytes at offset 0 in buffer of 4 bytes, so is within bounds (if memary is allocated).
Pointer may point to variable or field of variable:

'ret', local to function 'funcl’, et is accessed outside its scope.

"1 Off (default)

When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green

1-240

Detect stack pointer dereference outside scope (-detect-pointer-escape)

even if the pointer dereference is outside the variable scope, as long as it satisfies
requirements:

* The pointer is not NULL.

* The pointer points within the memory buffer.

Command-Line Information

Parameter: -detect-pointer-escape
Default: Off

See Also

Illegally dereferenced pointer

Introduced in R2015a

1-241

1 Option Descriptions

Disable checks for non-initialization (-disable-
initialization-checks)

Disable checks for non-initialized variables and pointers

Description

This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 1-244.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings

¥ On

Polyspace Code Prover does not perform the following checks:

* Non-initialized local variable: Local variable is not initialized before
being read.

* Non-initialized variable: Variable other than local variable is not
initialized before being read.

* Non-initialized pointer: Pointer is not initialized before being read.

1-242

Disable checks for non-initialization (-disable-initialization-checks)

* Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

+ Variables have full-range of values allowed by their type.

* Pointers can be NULL-valued or point to a memory block at an unknown offset.

"1 Off (default)

Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips

+ If you select this option, the software does not report most violations of MISRA C:
2004 (Polyspace Code Prover), rule 9.1, and MISRA C:2012 Rule 9.1.

+ If you select this option, the number and type of orange checks in your code can
change.

For instance, the following table shows an additional orange check with the option
enabled.

1-243

1 Option Descriptions

1-244

Checks for Non-initialization Enabled Checks for Non-initialization Disabled
void func(int flag) { void func(int flag) {
int wvarl,var2; int varl,var2;
if (flag==0) { if (flag==0) {
varl=var2; varl=var2;
} }
else { else {
varl=0; varl=0;
} }
var2=varl + 1; var2=varl + 1;
} }
In this example, the software produces: |In this example, the software:

+ Ared Non-initialized local variable|* Does not produce Non-initialized
check on var2 in the if branch. The local variable checks. At
verification continues as if only the initialization, the software assumes
else branch of the if statement that var2 has.full range of int
exists. values. Following the if statement,

because the software considers both

if branches, it assumes that varl
also has full range of int values.

* A green Non-initialized local
variable check on varl in the last
statement. varl has the assigned

value 0. * Produces an orange Overflow check

on the + operation. For instance, if
varl has the maximum int value,
adding 1 to it can cause an overflow.

+ A green Overflow check on the +
operation.

Command-Line Information

Parameter: -disable-initialization-checks
Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -disable-
initialization-checks

See Also

Ignore overflowing computations on constants (-ignore-constant-overflows)

Ignore overflowing computations on constants (-
ignore-constant-overflows)

Allow overflow in computations involving constants

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow overflow in computations involving constants.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -ignore-constant-overflows. See “Command-Line
Information” on page 1-246.

Why Use This Option

Overflows in computations with compile-time constants can stop the analysis. Use this
option to ignore these overflows and continue the analysis.

For instance, char x = 0xff; causes an overflow according to the ANSI C standard.
However, if you use this option, Polyspace considers that this statement is equivalent to
char x = -1;.

Settings

¥ On

The verification allows overflows in computations involving constants.

Off (default)

If an overflow occurs in computations involving constants, the verification can stop.

1-245

1 Option Descriptions

Tips

* This option applies to computations involving compile-time constants only. For
instance, the statement char x = (rand() ? OxFF:0xFE); causes an Overflow
error irrespective of whether the option is used because the value of x is not known at
compile-time.

Command-Line Information

Parameter: -ignore-constant-overflows

Default: Off

See Also

Overflow

1-246

Permissive function pointer calls (-permissive-function-pointer)

Permissive function pointer calls (-permissive-
function-pointer)

Allow type mismatch between function pointers and the functions they point to

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-248 for other options you must also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 1-248.

Settings

¥ On
The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int f(int*) can be called by a function pointer declared as int fptr (void*).
Off (default)

The verification must require that the argument and return types of a function
pointer and the function it calls are identical.

1-247

1 Option Descriptions

1-248

Tips

+ With sources that use function pointers extensively, enabling this option can cause
loss in performance. This loss occurs because the verification has to consider more
execution paths.

Dependency

This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer

Default: Off
Example: polyspace-code-prover-nodesktop -sources file name -
permissive-function-pointer

See Also

Overflow computation mode (-scalar-overflows-behavior)

Overflow computation mode (-scalar-
overflows-behavior)

Specify whether result of overflow must be wrapped around or truncated

Description

This option affects a Code Prover analysis only.

Specify whether Polyspace must wrap the result of an integer overflow or restrict it to its
extremum value.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -scalar-overflows-behavior. See “Command-Line
Information” on page 1-250.

Why Use This Option

Use this option to specify the assumptions to make following an integer overflow.

Settings

Default: truncate-on-error

truncate-on-error

If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.

* Orange, Polyspace analyzes the remaining code in the current scope. However,
Polyspace considers that:

1-249

1 Option Descriptions

1-250

After a positive Overflow, the result of the operation has an upper bound.
This upper bound is the maximum value allowed by the type of the result.

+ After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

wrap-around

Polyspace analyzes the remaining code in the current scope even after a red integer
Overflow. However, Polyspace wraps the result of the overflow. For instance, if you
choose this option:

In the following code, after the red Overflow, Polyspace considers that i has a
value -2°1,

#include<stdio.h>

void main () {

int i=1;

i =1 << 30;

1= 1 *2;

printf("%d",1i);

}
In the following code, before the orange Overflow, i has values in the range
[1..231-1]. But, after the orange Overflow, Polyspace considers that i has even
values in the range [-23'..2] or [2..23-2].

#include<stdio.h>

int getval();
void main () {
int i=getVval();
1if(1i>0) {
i = 1i*2;

printf("%d",1i);
}
}

Command-Line Information

Parameter: -scalar-overflows-behavior

Value: wrap-around | truncate-on-error

Default: truncate-on-error

Overflow computation mode (-scalar-overflows-behavior)

Example: polyspace-code-prover-nodesktop -sources file name -scalar-
overflows-behavior wrap-around

See Also

Detect overflows (-scalar-overflows-checks) | Overflow

1-251

1 Option Descriptions

1-252

Detect overflows (-scalar-overflows-checks)

Specify whether to check for integer overflows on signed and unsigned variables

Description

This option affects a Code Prover analysis only.

Specify whether to check for integer overflows on signed and unsigned variables.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -scalar-overflows-checks. See “Command-Line
Information” on page 1-253.

Why Use This Option

Use this option to specify the kinds of integer overflows that the verification must detect.

Settings

Default: signed

signed

The verification checks for overflows in computations involving signed integers alone.
This behavior conforms to the ANSI C (ISO C++) standard.

signed-and-unsigned

The verification checks for overflows in all integer computations. This behavior is
stricter than the ANSI C (ISO C++) standard.

Detect overflows (-scalar-overflows-checks)

none

The verification does not check for integer overflows. If a computed value exceeds the
range of its type, the value is wrapped. For instance, in the following code, x is
wrapped to 0 after the sum.

unsigned char x;
x = 255;
x = x+1;

Tips

* Following an overflow, unless you select none, Polyspace can either wrap the result or
restrict it to its extremum value. Use Overflow computation mode to specify how
the verification handles results of an overflow.

+ Use the option signed-and-unsigned if you are computing the size of a buffer from

unsigned integers. Using this option helps you detect an overflow at the buffer
computation stage. Otherwise, you might see an error later due to insufficient buffer.

+ If you use the option signed-and-unsigned, Polyspace does not produce an
overflow error on bitwise NOT operations if you cast the result of the operation back
to the operand type. For instance, Polyspace does not produce an overflow error on
(uint8 t) (~var) where var is of type uint8 t.

Command-Line Information

Parameter: -scalar-overflows—-checks

Value: signed | signed-and-unsigned | none

Default: signed

Example: polyspace-code-prover-nodesktop -sources file name -scalar-
overflows-checks signed

See Also

Overflow computation mode (-scalar-overflows-behavior) | Overflow

Topics
“Detect Overflows in Buffer Size Computation” (Polyspace Code Prover)

1-253

1 Option Descriptions

1-254

Allow incomplete or partial allocation of structures
(-size-in-bytes)

Allow a pointer with insufficient memory buffer to point to a structure

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-256 for other options that you must also enable.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 1-256.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

Allow incomplete or partial allocation of structures (-size-in-bytes)

Settings

¥ On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce
an Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed

buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c; } BIG;

void main (void) {
BIG *p = malloc(sizeof (LITTLE))

if (p!= ((void *) 0)) {
p->a = 0 ;
p->b = 0 ;
p->c = 0 ; // Red IDP check
}
}
"] Off (default)

Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct 1little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c¢; } BIG;

1-255

1 Option Descriptions

1-256

volid main (void) {
BIG *p = malloc(sizeof (LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ; // Red IDP check
p->b = 0 ;
p->c = 0 ;

Tips

The verification also allows partial allocation of structures when you select Enable
pointer arithmetic across fields.

If you do not turn on this option, you cannot point to the field of a partially allocated
structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

Dependency

This option is available only if you set Source code language (-lang) to C.

Command-Line Information

Parameter: -size-in-bytes

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -size-in-
bytes

Allow incomplete or partial allocation of structures (-size-in-bytes)

See Also

Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| I1legally dereferenced pointer

1-257

1 Option Descriptions

1-258

Subnormal detection mode (-check-subnormal)

Detect operations that result in subnormal floating-point values

Description

This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

4

Command line: Use the option -check-subnormal. See “Command-Line Information’
on page 1-261.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings

Default: allow

allow

The verification does not check operations for subnormal results.

Subnormal detection mode (-check-subnormal)

forbid

The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all

The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal
values, the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
+ If you want to see only those operations where a subnormal value originates from

non-subnormal operands, use the warn-first mode.

For instance, in the following code, argl and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

1-259

1 Option Descriptions

1-260

warn-all

warn-first

void func double arg2)

{

(double argl,

double
double
double
double

differencel = argl - ar
difference2 = argl - ar
vall = differencel * 2;
val2 = differencez2 * 2;

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double argl, double arg2)

{

2; double differencel = argl - ar
2; double difference2 = argl - ar
double vall = differencel * 2;
double val2 = difference?2 * 2;

}

In this example, di fferencel and
difference2 can be subnormal if argl
and arg?2 are sufficiently close. The first
two checks for subnormal results are
orange. vall and val2 cannot be
subnormal unless differencel and
difference?2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see only
the first instance where a subnormal
value appears. You do not see red/orange
checks from those subnormal values
propagating to subsequent operations.

If you want to see where a subnormal value originates and do not want to see

subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, argl and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for argl-arg2. If you use the forbid mode and
perform the operation argl-arg?2 twice in succession, only the first operation is

highlighted. The second operation is not highlighted because the subnormal result for

the second operation arises from the same cause as the first operation.

Subnormal detection mode (-check-subnormal)

warn-all

forbid

void func (double argl,

{
differencel =
difference2
vall
valz =

double
double
double
double

argl -
argl -

difference2 *

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

double arg2)

= differencel * 2;

void func (double argl, double arg2)

{

2; double differencel = argl - ar
2; double difference2 = argl - ar
double vall = differencel * 2;
double val2 = difference?2 * 2;

}

In this example, di fferencel can be
subnormal if argl and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes from
consideration:

+ The close values of argl and arg2
that led to the subnormal value of
differencel.

In the subsequent operation argl -
arg2, the check is green and
difference?2 is not subnormal. The
result of the check on di fference2 *
2 is green for the same reason.

* The subnormal value of

differencel.

In the subsequent operation
differencel * 2, thecheckis

green.

* You cannot run the Automatic Orange Tester if you check for subnormals in your

verification.

Command-Line Information

Parameter: ~-check-subnormal

Value: allow | warn-first | warn-all | forbid

1-261

1 Option Descriptions

Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -check-
subnormal forbid

See Also

Polyspace Results
Subnormal float

Introduced in R2016b

1-262

Detect uncalled functions (-uncalled-function-checks)

Detect uncalled functions (-uncalled-
function-checks)

Detect functions that are not called directly or indirectly from main or another entry
point function

Description

This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option —uncalled-function-checks. See “Command-Line
Information” on page 1-264.

Why Use This Option
Typically, after verification, the Dashboard pane shows functions that are not called

during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings

Default: none

1-263

1 Option Descriptions

none
The verification does not generate checks for uncalled functions.
never-called
The verification generates checks for functions that are defined but not called.
called-from-unreachable

The verification generates checks for functions that are defined and called from an
unreachable part of the code.
all

The verification generates checks for functions that are:

* Defined but not called

* Defined and called from an unreachable part of the code.

Command-Line Information

Parameter: -uncalled-function-checks

Value: none | never-called | called-from-unreachable | all
Default: none

Example: polyspace-code-prover-nodesktop -sources file name -
uncalled-function-checks all

See Also

Function not called | Function not reachable

Topics

“Specify Analysis Options” (Polyspace Code Prover)

“Review Gray Checks” (Polyspace Code Prover)

“Review and Fix Function Not Called Checks” (Polyspace Code Prover)
“Review and Fix Function Not Reachable Checks” (Polyspace Code Prover)

1-264

Sensitivity context (-context-sensitivity)

Sensitivity context (-context-sensitivity)

Store call context information to identify function call that caused errors

Description

This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, you can identify the color of the
check for each call. For a tutorial on using this option, see “Identify Function Call with
Run-Time Error” (Polyspace Code Prover).

Settings

Default: none

1-265

1 Option Descriptions

1-266

none
The software does not store call context information for functions.
auto
The software stores call context information for checks in:
+ Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.
+ Small functions. The software uses an internal threshold to determine whether a
function is small.
custom

The software stores call context information for functions that you specify. To enter

the name of a function, click EII}I

Command-Line Information

Parameter: —-context-sensitivity

Value: functionl[, function2,...]

Default: none

Example: polyspace-code-prover-nodesktop -sources file name -context-
sensitivity myFuncl,myFunc?2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

See Also

Improve precision of interprocedural analysis (-path-sensitivity-delta)

Improve precision of interprocedural analysis (-
path-sensitivity-delta)

Avoid certain verification approximations for code with fewer lines

Description

This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-268.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

1-267

1 Option Descriptions

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips

Use this option only when you have less than 1000 lines of code.

Command-Line Information

Parameter: -path-sensitivity-delta
Value: Positive integer

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1-268

Precision level (-0)

Precision level (-0)

Specify a precision level for the verification

Description

This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -0#, for instance, -00 or -01. See “Command-Line
Information” on page 1-270.

Why Use This Option

Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings

Default: 2

0
This option corresponds to a static interval verification.

This option corresponds to a complex polyhedron model of domain values.

1-269

1 Option Descriptions

1-270

This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

Tips

For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information

Parameter: -00 | -01 | -02 | -03

Default: -02

Example: polyspace-code-prover-nodesktop -sources file name -01

See Also

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

Specific precision (-modules-precision)

Specific precision (-modules-precision)

Specify source files you want to verify at higher precision than the remaining verification

Description

This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option

User interface: In your project configuration, the option is available on the Precision
node. See “Dependency” on page 1-272 for other options you must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 1-272.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings

Default: All files are verified with the precision you specified using Precision >
Precision level.

Click I:II_II:I to enter the name of a file without the extension . c and the corresponding
precision level.

1-271

1 Option Descriptions

Dependency

This option is available only if you set Source code language (-lang) to Cor C-CPP.

Command-Line Information

Parameter: -modules-precision

Value: file:00 | file:01 | file:02 | file:03

Example: polyspace-code-prover-nodesktop -sources file name -0l -
modules-precision My File:02

See Also

Precision level (-0)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1-272

Verification level (-to)

Verification level (-to)

Specify number of times the verification process runs on your code

Description

This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -to. See “Command-Line Information” on page 1-276.

Why Use This Option

There are many reasons you might want to increase or decrease the verification level.
For instance:

* Coding rules are checked early during the compilation phase, with some exceptions
(Polyspace Code Prover) only. If you check for coding rules alone, you can lower the
verification level.

+ If you see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings

Default: Software Safety Analysis level 2

1-273

1 Option Descriptions

Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level O
The verification process runs once on your source code.
Software Safety Analysis level 1
The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs three time on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips
+ Use a higher verification level for fewer orange checks.
Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

1-274

Verification level (-to)

Software Safety Analysis Level 0

Software Safety Analysis Level 1

#include <stdlib.h>

void ratio

{

(float x, float *y)

*y=(abs (x-*y)) / (xt*y);
}

void levell (float x,
float y, float *t)
{ float wv;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);
}

float level2 (float v)
{
float t;
t = v;
levell (0.0, 1.0, &t);
return t;

}

void main (void)

{
float r,d;
d= level2(1.0);
r=1.0/ (2.0 - d);

#include <stdlib.h>

void ratio

{

(float x, float *y)

*y=(abs (x-*y)) / (x+*y);
}

void levell (float x,
float y, float *t)
{ float wv;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
float t;
t = v;
levell (0.0, 1.0, &t);
return t;

}

void main (void)
{
float r,d;
d= level2(1.0);
r=1.0/ (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower

level.

* For best results, use the option Software Safety Analysis level 2.If the

verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

1-275

1 Option Descriptions

+ Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

+ If you want to check for coding rules only, you can run Polyspace on your source code
up to the Source Compliance Checking phase.

With the exception of certain rules, (Polyspace Code Prover) Polyspace checks for
coding rule violations during the compilation phase.

+ If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information

Parameter: -to

Value: compile | pass0 | passl | pass2 | pass3 | pass4 | other

Default: pass2

Example: polyspace-code-prover-nodesktop -sources file name -to pass2

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1-276

Verification time limit (-t imeout)

Verification time limit (-timeout)

Specify a time limit on your verification

Description

This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -timeout. See “Command-Line Information” on page 1-
277.

Why Use This Option

Use this option to impose a time limit on the verification.

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, Technical Support can ask you to
impose a time limit on the verification so that the verification stops if it takes too long.

Settings

Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information

Parameter: -timeout

1-277

1 Option Descriptions

Value: time

Example: polyspace-code-prover-nodesktop -sources file name -timeout
5.75

See Also

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1-278

Inline (-inline)

Inline (-inline)

Specify functions that must be cloned internally for each function call

Description

This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -inline. See “Command-Line Information” on page 1-
281.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined

result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

1-279

1 Option Descriptions

1-280

Click I:II_II:I to add a field and enter the function name.
Click Q to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify
the function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention

func pst inlined ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:
* Normally, if a function is called twice and an operation causes a definite error only in

one of the calls, the check color is orange.

+ If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

+ Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

+ If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
+ Use this option to identify the cause of a Non-terminating call error.

+ Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

Inline (-inline)

Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

Choose functions to inline based on hints provided by the alias verification.
Do not use this option for entry point functions, including main.

Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
return a > b ? a : b;

}

void main () {
int 1=3, j=1, k;
k=max (i,]j);
i=0;
k=max (i,7j);

}

If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result
as using the option Inline.

For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information

Parameter: -inline

Value: functionl|[, function2([,...]]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -inline
funcl, func?2 B

See Also

1-281

1 Option Descriptions

1-282

Depth of verification inside structures (-k-
limiting)

Limit the depth of analysis for nested structures

Description

This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -k-1imiting. See “Command-Line Information” on
page 1-283.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

Depth of verification inside structures (-k-1imiting)

Command-Line Information

Parameter: -k-1imiting

Value: positive integer

Default: polyspace-code-prover-nodesktop -sources file name -k-
limiting 3 a

See Also

1-283

1 Option Descriptions

1-284

Generate report

Specify whether to generate a report after the analysis

Description

Specify whether to generate a report after the analysis.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

Set Option

User interface: In your project configuration, the option is available on the Reporting
node.

Command line: See “Command-Line Information” on page 1-285.

Why Use This Option

You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings

¥ On
Polyspace generates an analysis report using the template and format you specify.
Off (default)

Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Generate report

Tips

* To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator with the options —~template and -format.

Command-Line Information

There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and ~report-output-format for output
format automatically turns on the report generator.

See Also

Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Specify Analysis Options”
“Generate Reports”

1-285

1 Option Descriptions

1-286

Bug Finder and Code Prover report (-report-
template)

Specify template for generating analysis report

Description

Specify template for generating analysis report.

. rpt files for the report templates are available in matlabroot\toolbox\polyspace
\psrptgen\templates\. Here, matlabroot is the MATLAB installation folder.

Set Option

User interface: In your project configuration, the option is on the Reporting node. You
have separate options for Bug Finder and Code Prover analysis. See “Dependencies” on
page 1-292 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information”

on page 1-293.

Why Use This Option

Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings — Bug Finder
Default: BugFinderSummary

BugFinderSummary

The report lists:

Bug Finder and Code Prover report (-report-template)

Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,
the report lists the:
+ Defect group.

Defect name.

Number of instances of the defect found in the source code.

Coding Rules Summary: Coding rules along with number of violations.

BugFinder

The report lists:

Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

Defects: Defects found in the source code. For each defect, the report lists the:

* Function containing the defect.
Defect information on the Result Details pane.
Review information, such as Severity, Status and comments.
Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:
* Rule number and description.
* Function containing the rule violation.
+ Review information, such as Severity, Status and comments.

Configuration Settings: List of analysis options that Polyspace uses for
analysis. For more information, see “Analysis Options”. If your project has source
files with compilation errors, these files are also listed.

1-287

1 Option Descriptions

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or

disabled.

BugFinder CWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE identifiers for each defect.

CodeMetrics

The report lists the following:

+ Code Metrics Summary: Various quantities related to the source code. For
more information, see “Code Metrics”.

+ Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

CodingRules

For C code, the report lists information about compliance with:

+ MISRA C rules
+ MISRA AC AGC rules

* Custom coding rules
For C++ code, the report lists information about compliance with:
+ MISRA C++ rules

« JSF C++ rules

* Custom coding rules

This report also contains the Polyspace configuration settings for the analysis. An
additional section states the rules along with the information whether they were

enabled or disabled.
Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

* Information about whether the project satisfies quality objectives

1-288

Bug Finder and Code Prover report (-report-template)

+ Time taken in each phase of analysis

* Metrics about the whole project. For each metric, the report lists the quality
threshold and whether the metric satisfies this threshold.

+ Coding rule violations in the project. For each rule, the report lists the number of
violations justified and whether the justifications satisfy quality objectives.

+ Definite as well as possible run-time errors in the project. For each type of run-
time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

Settings — Code Prover

Default: Developer

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

+ Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as | | | ->

file name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

+ File containing the function call.

In addition, the line and column is also displayed.

+ File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

1-289

1 Option Descriptions

CodeMetrics

The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules

For C code, the report lists information about compliance with:

+ MISRA C rules
+ MISRA AC AGC rules

* Custom coding rules

For C++ code, the report lists information about compliance with:

* MISRA C++ rules

* JSF C++ rules

+ Custom coding rules

This report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. An additional section states the rules along with
the information whether they were enabled or disabled.

Developer

The report lists information useful to developers, including:

* Summary of results

+ Coding rule violations

+ List of proven run-time errors or red checks

+ List of unproven run-time errors or orange checks

+ List of unreachable procedures or gray checks

* Global variable usage in code. See “Global Variables” (Polyspace Code Prover).
The report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

DeveloperReview

The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted

by file location.

1-290

Bug Finder and Code Prover report (-report-template)

Developer withGreenChecks

The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality

The report lists information useful to quality engineers, including:

* Summary of results

+ Statistics about the code

* Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:
+ Information about whether the project satisfies quality objectives
* Time taken in each phase of verification

* Metrics about the whole project. For each metric, the report lists the quality
threshold and whether the metric satisfies this threshold.

+ Coding rule violations in the project. For each rule, the report lists the number of
violations justified and whether the justifications satisfy quality objectives.

+ Definite as well as possible run-time errors in the project. For each type of run-
time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

SoftwareQualityObjectives Summary

The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

1-291

1 Option Descriptions

1-292

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

VariableAccess

The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types,
see “Global Variables” (Polyspace Code Prover). For each global variable, the report
displays the following information:

* Variable name.

The entry for each variable is denoted by |.
* Type of the variable.
* Number of read and write operations on the variable.
* Details of read and write operations. For each read or write operation, the table

displays the following information:

+ File and function containing the operation in the form
file name.function name.

The entry for each read or write operation is denoted by | | . Write operations
are denoted by < and read operations by >.

Line and column number of the operation.

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

Dependencies

This option is available only if you select the Generate report check box.

Tips

The first chapter of the reports contain a summary of the relevant results. You can enter
a Pass/Fail status in that chapter for your project based on the summary. If you use the

template SoftwareQualityObjectives or SoftwareQualityObjectives Summary,
the status is automatically assigned based on your objectives and the verification results.

Bug Finder and Code Prover report (-report-template)

For more information on enforcing objectives using Polyspace Metrics, see “Compare
Metrics Against Software Quality Objectives” (Polyspace Code Prover).

Command-Line Information

Parameter: -report-template

Value: Full path to template.rpt

Example: polyspace-bug-finder-nodesktop -sources file name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates\bug finder
\BugFinder.rpt

Example: polyspace-code-prover-nodesktop -sources file name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt

See Also
Generate report | Output format (-report-output-format)
Topics

“Generate Reports”

1-293

1 Option Descriptions

1-294

Output format (-report-output-format)

Specify output format of generated report

Description

Specify output format of analysis report.

Set Option

User interface: In your project configuration, the option is on the Reporting node. See
“Dependencies” on page 1-295 for other options you must also enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 1-295.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings

Default: Word

HTML

Generate report in . html format
PDF

Generate report in . pdf format
Word

Generate report in . docx format.

Output format (-report-output-format)

Tips

If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information

Parameter: -report-output-format

Value: html | pdf | word

Default: word

Example: polyspace-bug-finder-nodesktop -sources file name -report-—
output-format pdf

See Also
Generate report | Bug Finder and Code Prover report (-report-template)
Topics

“Specify Analysis Options”
“Generate Reports”

1-295

1 Option Descriptions

1-296

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)

Enable batch remote analysis

Description

Enable batch remote analysis.

For batch remote analysis, you need:

* Polyspace and MATLAB Distributed Computing Server™ on the cluster
+ MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 1-
297.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

* You want to shut down your local machine but not interrupt the analysis.
* You want to free execution time on your local machine.

* You want to transfer the analysis to a more powerful computer.

Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Settings

¥/ On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

+ If you are running the analysis from the Polyspace user interface, you can close
the user interface.

+ If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

* In the Polyspace user interface, select Tools > Open Job Monitor.

* On the DOS or UNIX® command line, use the polyspace-jobs-manager
command. For more information, see “Run Remote Analysis at the Command
Line”.

* On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the
cluster.

Off (default)

Do not run batch analysis on a remote computer.

Command-Line Information

To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch

Value: -scheduler host name if you have not set the Job scheduler host name in
the Polyspace user interface

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost

1-297

1 Option Descriptions

polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also

Upload results to Polyspace Metrics (-add-to-results-repository) | -
scheduler

Topics
“Specify Analysis Options”
“Set Up Server for Metrics and Remote Analysis”

1-298

Upload results to Polyspace Metrics (-add-to-results-repository)

Upload results to Polyspace Metrics (-add-to-
results-repository)

Upload analysis results for viewing on Polyspace Metrics web dashboard

Description

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 1-300 for other options that you must also enable.

Command line: Use the option —~add-to-results-repository. See “Command-Line
Information” on page 1-300.

Why Use This Option

Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

* Provide your management a high-level overview of your code quality.

* Compare your code quality against predefined standards.

+ Establish a process where you review in detail only those results that fail to meet
standards.

* Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics”.

1-299

1 Option Descriptions

Settings

¥/ On

Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

Off (default)

Analysis results are stored locally.

Dependencies

The option to upload to Polyspace Metrics is available only if you select Run Bug
Finder or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information

Parameter: —-add-to-results-repository

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

The password is optional.

See Also

“Set Up Server for Metrics and Remote Analysis” | “Set Up Polyspace Metrics” | Run
Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Run Remote Batch Analysis”

1-300

Use fast analysis mode for Bug Finder (-fast-analysis)

Use fast analysis mode for Bug Finder (-fast-
analysis)

Run analysis using faster local mode

Description

This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent
runs analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.
When you launch a Bug Finder fast-analysis, Polyspace analyzes each file for a subset of
defects and coding rules. These defects and rules are coding errors that can be found
within a single compilation unit, such as a single function or file. The software does not
perform interprocedural or cross-functional analysis.

Set Option

User interface: In your project configuration, the option is available on the Run
Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on
page 1-303.

Why Use This Option

If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in

fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

1-301

1 Option Descriptions

Situation What Is Reanalyzed
Source file modified Modified source file
Header file modified Source files that include the modified header

file (directly or indirectly)

Analysis options added or removed All files

Previous fast-analysis results not found |All files

For example, consider a Polyspace project with three . c files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal
analysis.
=3 Bug_Finder_Example
[Project Source Files
[Project Include Folders
=3 Module_1
=3 Module Source Files
w3 sources
=3 Configuration
[% Bug_Finder_Example
=3 Result
|E_| BF_Result [Completed]

|1| BF_Fast_Result [Completed]

Settings

Default: | Off

1 On

Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

1-302

Use fast analysis mode for Bug Finder (-fast-analysis)

Off

Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips
In fast analysis mode:
* You cannot create a new results folder for each run. Even if you choose to create a

new result folder, each new run overwrites the previous one.

+ If you enter comments in your results, the comments are automatically imported to
the next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

Select Tools > Import Comments. Navigate to the sibling results folder
BF Fast Result and import comments from the fast mode results.

* When reviewing results of fast mode, enter the comments directly into your code.
If you run a regular analysis on this code, the comments are imported to your
analysis results.

For details on how to enter code comments, see “Annotate and Hide Known or
Acceptable Results”.

* You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

Command-Line Information

Parameter: -fast-analysis

Default: Off

Example: polyspace-bug-finder-nodesktop -sources filename —-fast-
analysis

See Also
“Defects”

1-303

1 Option Descriptions

Topics
“Results Found by Fast Analysis”

1-304

Command/script to apply after the end of the code verification (-post-analysis-command)

Command/script to apply after the end of the code
verification (-post-analysis-command)

Specify command or script to be executed after analysis

Description

Specify a command or script to be executed after the analysis.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-306.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create
a script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings

No Default

Enter full path to the command or script, or click o navigate to the location of the
command or script. After the analysis, this script is executed.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send email.pl that sends

1-305

1 Option Descriptions

1-306

an email once the analysis is over, enter matlabroot\sys\perl\win32\bin
\perl.exe <absolute path>\send email.pl.Here, matlabroot is the location of
the current MATLAB installation, such as C:\Program Files\MATLAB\R2015b\, and
<absolute path>is the location of the Perl script.

Tips

If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send mail. sh, the Shell
script send _email.sh must be present on the server in /local/utils/. The software
does not copy the script send email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Command-Line Information

Parameter: -post-analysis—-command

Value: Path to executable file or command in quotes

No Default

Example in Linux: polyspace-bug-finder-nodesktop -sources file name -
post-analysis-command “pwd’/send email.pl

Example in Windows: polyspace-bug-finder-nodesktop -sources file name
-post-analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My Scripts\send email"

See Also

Command/script to apply to preprocessed files (-post-preprocessing-
command)

Command/script to apply after the end of the code verification (-post-analysis-command)

Topics
“Specify Analysis Options”

1-307

1 Option Descriptions

1-308

Automatic Orange Tester (—automatic-orange-
tester)

Specify that Automatic Orange Tester must be executed after verification

Description

This option affects a Code Prover analysis only.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependency” on page 1-309 for other options you must also enable.

Command line: Use the option —automatic-orange-tester. See “Command-Line
Information” on page 1-309.

Why Use This Option

The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

Automatic Orange Tester (-automatic-orange-tester)

Settings

Y| On

After verification, when you run the Automatic Orange Tester, Polyspace creates
tests for unproven code and runs them.

Off (default)

You cannot launch the Automatic Orange Tester after verification.

Dependency

This option is available only if you set Source code language (-lang) to Cor C-CPP.

Tips
+ To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.

* When using the automatic orange tester, you cannot:

+ Select Division round down under Target & Compiler.

* Select the options c18, tms320c3c. x86 64 or sharc21x61 for Target &
Compiler > Target processor type.

Specify the type char as 16-bit or short as 8-bit using the option mcpu. . .
(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

Specify global asserts in the code, having the form Pst Global Assert(A,B).In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

+ Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information

Parameter: ~automatic-orange-tester

Default: Off

1-309

1 Option Descriptions

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester

See Also

Number of automatic tests (-automatic-orange-tester-tests-number) |
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout)
Topics

“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

1-310

Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration)

Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description

This option affects a Code Prover analysis only.

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-311 for other options you must also enable.

Command line: Use the option —automatic-orange-tester-loop-max—-iteration.
See “Command-Line Information” on page 1-312.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports 1s 1000.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.

1-311

1 Option Descriptions

* Turn on Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information

Parameter: —automatic-orange-tester-loop-max-iteration

Value: positive integer

Default: 1000

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration

500

See Also

Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum test
time (-automatic-orange-tester-timeout)

Topics

“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1-312

Number of automatic tests (~automatic-orange-tester-tests-number)

Number of automatic tests (-automatic-
orange-tester-tests-number)

Specify number of tests that Automatic Orange Tester must run

Description

This option affects a Code Prover analysis only.
Specify number of tests that you want the Automatic Orange Tester to run. The more the

number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-313 for other options you must also enable.

Command line: Use the option —automatic-orange-tester-tests-number. See
“Command-Line Information” on page 1-314.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.

* Turn on Automatic Orange Tester (-automatic-orange-tester).

1-313

1 Option Descriptions

Command-Line Information

Parameter: ~automatic-orange-tester-tests-number

Value: positive integer

Default: 500

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -—-automatic-orange-tester-tests-number 500

See Also

Automatic Orange Tester (-automatic-orange-tester) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout)

Topics

“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1-314

Maximum test time (-automatic-orange-tester-timeout)

Maximum test time (-automatic-orange-
tester-timeout)

Specify time in seconds allowed for a single test in Automatic Orange Tester

Description

This option affects a Code Prover analysis only.
Specify time in seconds allowed for a single test. After this time is over, the Automatic

Orange Tester proceeds to the next test. Increasing this time reduces number of tests
that do not complete, but increases total verification time.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-315 for other options you must also enable.

Command line: Use the option —automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-316.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.

* Turn on Automatic Orange Tester (-automatic-orange-tester).

1-315

1 Option Descriptions

1-316

Command-Line Information

Parameter: —automatic-orange-tester-timeout

Value: time

Default: 5

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also

Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration)

Topics

“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

Other

Other

Specify additional flags for analysis

Description

Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

Tip

Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the
Configuration pane to enter the options. Sometimes, the options and their arguments
have to be preceded by extra flags. When providing you the option, Technical Support
will let you know if the extra flags are required.

Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags

Example: polyspace-bug-finder-nodesktop -extra-flags -option-name -
extra-flags option param

1-317

Polyspace Command-Line Options

2 Polyspace Command-Line Options

-asm-begin -asm-end

Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin "markl[,mark2,...]" -asm-end "markl[,mark2,...]"
Description
-asm-begin "markl[,mark2,...]" -asm-end "markl[,mark2,...]" excludes

compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if
compilation errors occur due to introduction of assembly code.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for —asm-begin as they are for ~asm-end.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

A block of code is delimited by #pragma startl and #pragma endl. These names must
be in the same order for their respective options. Either:

-asm-begin "startl" -asm-end "endl"
or
-asm-begin "markl,...markN,startl" -asm-end "markl,...markN,endl"

The following example marks two functions for exclusion, foo_1 and foo_2.

-asm-begin -asm-end

Code:

#pragma asm begin foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm _end foo

#pragma asm begin bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm begin foo,asm begin bar"
-asm-end "asm end foo,asm end bar"

asm_begin foo and asm_begin bar mark the beginning of the assembly source code
sections to be ignored. asm end foo and asm end bar mark the end of those respective
sections.

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-3

2 Polyspace Command-Line Options

-author

Specify project author

Syntax

—author "value"

Description

—author "value'" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the Polyspace user interface, select 2 to specify the Project name, Version, and
Author parameters in the Polyspace Project — Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop —-author "John Smith"

See Also

-date | -prog | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

-date

-date

Specify date of analysis

Syntax

-date "date"

Description

-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By

default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also

—author | -prog | polyspaceBugFinder | polyspaceCodeProver

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-5

2 Polyspace Command-Line Options

2-6

-function-behavior-specifications

Map imprecisely analyzed function to standard function for precise analysis

Syntax

-function-behavior-specifications file path

Description

-function-behavior-specifications file path specifies the path to an XML file.
You can use this XML file to map some of your functions to corresponding standard
functions that Polyspace recognizes. If you run verification from the command line,

file path is the absolute path or path relative to the folder from which you run the
command. If you run verification from the user interface, file path is the absolute
path.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Using Option for Precision Improvement
This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a
standard function that is a close analog of your function, use this mapping. Though your
function itself is not analyzed, the analysis is more precise at the locations where you call
the function. For instance, if the verification cannot analyze your function cos32
precisely and considers full range for its return value, map it to the cos function for a
return value in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

-function-behavior-specifications

The verification assumes the same return values for your function as the standard
function.

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

The verification checks for the same issues as it checks with the standard function.
For instance, if you map your function acos32 to the standard function acos,

the ITnvalid use of standard library routine check determines if the
argument of acos32 is in [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in matlabroot\polyspace\verifier\cxx\
where matlabroot is the MATLAB installation folder. The functions that you can map
to include:

Standard library functions from math.h.
Memory management functions from string.h.

__ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function
and produces an orange Non-initialized local variable check on a variable
that you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

__ps_lookup table clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the functionto ps lookup table clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and
no extrapolation, the verification uses the function names. See “Stub lookup tables”
(Polyspace Code Prover). Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not
follow specific conventions. You must explicitly specify them.

2 Polyspace Command-Line Options

Using Option for Concurrency Detection
This section applies both to a Bug Finder and a Code Prover analysis.

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Modeling
Multitasking Code”.

Examples

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation
and map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert (x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value i1s 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
matlabroot\polyspace\verifier\cxx\ to another location, for instance, "C:
\Polyspace projects\Common\Config files". Change the write permissions
on the file.

-function-behavior-specifications

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

<function name="my lib cos" std="acos"> </function>
To:

<function name="acos32" std="acos"> </function>

3 Specify the location of the file for verification.

polyspace-code-prover—-nodesktop -function-behavior-specifications
"C:\Polyspace projects\Common\Config files
\function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard
function argument. For instance:

* ps lookup table clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function
might have additional arguments besides the look-up table array itself. In this case,
use argument remapping to specify which argument of your function is the look-up
table array.

For instance, suppose a function my lookup table has the following declaration:

double my lookup table(double u0, const real T *table,
const double *bp0);

The second argument of your function my lookup table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

<function name="my lookup table" std=" ps lookup table clip">
<mapping std arg="1" arg="2"></mapping>
</function>

When you call the function:

2 Polyspace Command-Line Options

2-10

res = my lookup table(u, tablelO, bp);
The verification interprets the call as:

res = ps lookup table clip(tablelO);

The verification assumes that the value of res lies within the range of values in
tablelO.

__pPs _meminit:

This function specific to Polyspace takes a memory address as the first argument and
a number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use

argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my meminit has the following declaration:

void my meminit (enum InitKind k, void* dest, int is aligned,
unsigned int size);

The second argument of your function is the starting address and the fourth
argument is the number of bytes. In the file function-behavior-
specifications-sample.xml, add this code:
<function name="my meminit" std="__ps meminit">

<mapping std _arg="1" arg="2"></mapping>

<mapping std _arg="2" arg="4"></mapping>
</function>

When you call the function:

my meminit (INIT START BY END, &buffer, 0, sizeof (buffer));
The verification interprets the call as:

__ps _meminit (&buffer, sizeof (buffer));

The verification assumes that sizeof (buffer) number of bytes starting from
sbuffer are initialized.

memset: Variable number of arguments.

-function-behavior-specifications

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my memset (void*, int, size t, ...)
To map the function to the memset function, use the following mapping:
<function name="my memset" std="memset">

<mapping std arg="1" arg="1"></mapping>

<mapping std arg="2" arg="2"></mapping>

<mapping std arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

* my acos — acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my acosis 0.
+ Before mapping:

double x = my acos(1.0);
assert(x <= 2.0);

+ Mapping specification:

<function name="my acos" std="acos">
</function>

« After mapping:

double x = my acos(1.0);
assert(x <= 2.0);

° my sgqrt — sqgrt:

If you use the mapping, the Invalid use of standard library routine check
turns red. Otherwise, the verification does not check whether the argument of
my_sgrt is nonnegative.

* Before mapping:

2-11

2 Polyspace Command-Line Options

2-12

res = my sqrt(-1.0);
+ Mapping specification:

<function name="my sqrt" std="sqrt">
</function>

+ After mapping:
res = my_sqrt(-1.0);

my lookup table (argument 2) » ps lookup table clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my lookup table is within the range of the look-
up table array table.

+ Before mapping:

double table[3] = {1.1, 2.2, 3.3}

double res = my lookup table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

+ Mapping specification:
<function name="my_ lookup table" std="_ps_lookup_table clip">
<mapping std_arg="1" arg="2"></mapping>
</function>

« After mapping:

double table[3] = {1.1, 2.2, 3.3}

res real = my lookup table (u, table9, bp);
assert (res_real >= 1.1 && res_real <= 3.3);

my meminit — ps meminit:

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

+ Before mapping:

struct X {
int fieldl ;

-function-behavior-specifications

int field2 ;
b

struct X x;
my meminit (&x, sizeof (struct X));
return x.fieldl;

* Mapping specification:

<function name="my meminit" std="_ ps meminit">
<mapping std arg="1" arg="1"></mapping>
<mapping std arg="2" arg="2"></mapping>
</function>

« After mapping:
struct X {
int fieldl ;

int field2 ;
b

struct X x;
my meminit (&x, sizeof (struct X));
return x.fieldl;

my meminit — ps meminit

If you use the mapping, the Non-initialized local v

ariable check turns red.

The verification assumes that only the field fieldl of the structure x is initialized

with valid values.
+ Before mapping:

struct X {
int fieldl ;
int field2 ;
b

struct X x;
my meminit (&x, sizeof (int));
return x.field2;

* Mapping specification:

2-13

2 Polyspace Command-Line Options

2-14

<function name="my meminit" std="_ ps_meminit">
</function>

+ After mapping:

struct X {
int fieldl ;
int field2 ;
b

struct X x;
my meminit (&x, sizeof (int));
return x.field2;

Effect of Mapping on Concurrency Detection

In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

* Thread creation function: createTask — pthread create
* Function that begins critical section: takeLock — pthread mutex lock

* Function that ends critical section: releaseLock — pthread mutex unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model
used in your code and find possible race conditions.

* Before mapping:
The analysis does not detect the data race on var2.
typedef void* (*FUNT) (voidx*);

extern int takelLock (int* t);

extern int releaselock (int* t);

// First argument is the function, second the id
extern int createTask (FUNT,int*,int*,void¥*);

int t idl,t id2;
int lock;

int varl;
int var2;

-function-behavior-specifications

void* taskl (void* a) {
takeLock (&lock) ;
varl++;
var2++;
releaselock (&lock) ;
return 0;

void* task2 (void* a) {
takeLock (&lock) ;
varl++;
releaselock (&lock) ;
var2++;
return 0;

void main () {

createTask (taskl, &t id1,0,0);
createTask (task2, &t 1d2,0,0);

}
Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread create.
The other available alternatives, createThread or OSTaskCreate, have different

argument types.

Even when mapping to pthread create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread create but the first argument of createTask.

<function name="createTask" std="pthread create" >

<mapping std_arg="1"

<mapping std_arg="3"

<mapping std_arg="2"

<mapping std_arg="4"
</function>

arg="2"></mapping>
arg="1"></mapping>
arg="3"></mapping>
arg="4"></mapping>

<function name="takeLock" std="pthread mutex lock" >

</function>

<function name="releaseLock" std="pthread mutex unlock" >

</function>

2-15

2 Polyspace Command-Line Options

2-16

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in matlabroot\polyspace
\verifier\cxx\. matlabroot is the MATLAB installation folder, such as C:
\Program Files\MATLAB\R2017b. See also “Modeling Multitasking Code”.

After mapping:
The analysis detects the data race on var2.
typedef void* (*FUNT) (void*);

extern int takeLock (int* t);

extern int releaselLock (int* t);

// First argument is the function, second the id
extern int createTask (FUNT,int*,int*,void¥*);

int t idl,t id2;
int lock;

int varl;
int var2;

void* taskl (void* a) {
takeLock (&lock) ;
varl++;
var2++;
releaselock (&lock) ;
return 0;

void* task2 (void* a) {
takeLock (&lock) ;
varl++;
releaselock (&lock) ;
var2++;
return 0;

void main () {
createTask (taskl, &t 1d1,0,0);
createTask (task2, &t 1d2,0,0);

-function-behavior-specifications

See Also
“Stub lookup tables” (Polyspace Code Prover)

Topics
“Reduce Orange Checks” (Polyspace Code Prover)

Introduced in R2016b

2-17

2 Polyspace Command-Line Options

2-18

-generate-launching-script-for

Extract information from project file

Syntax

-generate-launching-script-for PRJFILE

Description

-generate-launching-script-for PRJFILE extracts information from the project
file PRUFILE so that you can run an analysis from the command line. A folder is created
containing the following files:

* source_ command.txt — List of source files for the -~source-files option.

* options command.txt — List of the analysis options for the ~options-file

option.

* temporal exclusions.txt — List of temporal exclusions, generated only if you
specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

* .polyspace conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

* launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or ~add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace Bug Finder interface, the
script will run from the command line.

Examples

-generate-launching-script-for

Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace-bug-finder.

polyspace-bug-finder -generate-launching-script-for myproject.bf.psprj

See Also

Topics
“Create Command-Line Script from Project File”
“Run Local Analysis from DOS or UNIX Command Line”

2-19

2 Polyspace Command-Line Options

-h[elp]

Display list of possible options

Syntax

-h
-help

Description

-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples

Display the command-line help.

polyspace-bug-finder-nodesktop -h
polyspace-bug-finder-nodesktop -help

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-20

Specify include folder for compilation

Syntax

-1 folder

Description

-1 folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h> and
you include the folder:

C:\My_ Project\MySourceFiles\Includes
the folder C:\My Project\MySourceFiles must contain a filemylib.h.

The analysis automatically includes the . /sources folder (if it exists) after the include
folders that you specify.

Examples

Include two folders with the analysis.
polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc
Because . /sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc
-I ./sources

2-21

2 Polyspace Command-Line Options

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-22

-import-comments

-import-comments

Import comments and justifications from previous analysis

Syntax

-import-comments resultsFolder

Description

-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder. resultsFolder must be the same
type of analysis you are running. For example, if you are running a Bug Finder analysis,
you cannot import comments from a Code Prover verification.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3
—-import-comments C:\Results\myProj\1l.2

See Also

-version | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-23

2 Polyspace Command-Line Options

2-24

-no-assumption-on-absolute-addresses

Remove assumption that absolute address usage is valid

Syntax

-no-assumption-on-absolute-addresses

Description

This option affects Code Prover analysis only.

-no-assumption-on-absolute-addresses removes the default assumption that

absolute addresses used in your code are valid. If you use this option, the verification
produces an orange Absolute address usage check when you assign an absolute

address to a pointer. Otherwise, the check is green by default.

The type of the pointer to which you assign the address determines the initial value
stored in the address. For instance, if you assign the address to an int* pointer,
following this check, the verification assumes that the memory zone that the address
points to is initialized with an int value. The value can be anything allowed for the data
type int.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

The use of option -no-assumption-on-absolute-addresses can increase the
number of orange checks in your code. For instance, the following table shows an
additional orange check with the option enabled.

-no-assumption-on-absolute-addresses

Absolute Address Usage Green

Absolute Address Usage Orange

void main () {
int *p =
int x;
X=*p;

(int *)0x32;

}
In this example, the software produces:

A green Absolute address usage
check when the address 0x32 is
assigned to a pointer p.

* A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

void main () {
int *p =
int x;
X=*p;

(int *)0x32;

}
In this example, the software produces:

* An orange Absolute address usage
check when the address 0x32 is
assigned to a pointer p.

+ A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

For best use of the Absolute address usage check, leave this check green by default
during initial stages of development. During integration stage, use the option —-no-
assumption-on-absolute-addresses and detect all uses of absolute memory
addresses. Browse through them and make sure that the addresses are valid.

See Also

polyspaceCodeProver

Topics

“Run Local Verification at Command Line” (Polyspace Code Prover)

Introduced in R2016a

2-25

2 Polyspace Command-Line Options

2-26

-MaXx-processes

Specify maximum number of processors for analysis

Syntax

—-maxXx—-processes num

Description

-max-processes num specifies the maximum number of processors that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and uses
the specified number of processors to speed up the analysis. The valid range of numis 1 to
128.

Unless you specify this option, the Bug Finder analysis uses the maximum number of
available processors. Use this option to restrict the number of processors used.

The option uses the physical processors available and not the logical processors. For
instance, if you have 2 physical cores but 4 logical cores, the option -max-processes 4
uses the 2 physical cores only. To determine number of physical processors available,
check the system information in your operating system.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

-Mmax-processes

Tips

You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processors.

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-27

2 Polyspace Command-Line Options

2-28

-non-preemptable-tasks

Specify functions that represent nonpreemptable tasks

Syntax

-non-preemptable-tasks functionl[, function2[,...]]

Description

This option affects a Bug Finder analysis only.

-non-preemptable-tasks functionl[, functionZ2[, ...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic entry points on page 1-112 and
cyclic tasks on page 1-114 but can be interrupted by interrupts on page 1-117,
preemptable or nonpreemptable.

To specify a function as a nonpreemptable cyclic task, you must first specify the following
options:

* Configure multitasking manually

* Entry points (-entry-points) orCyclic tasks (-cyclic-tasks): Specify
the function name.

The functions that you specify must have the prototype:

void function name(void) ;

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-preemptable-interrupts | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details

-non-preemptable-tasks

(-critical-section-begin -critical-section-end) | Temporally exclusive

tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

2-29

2 Polyspace Command-Line Options

-options-file

Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1 Create an options file called 1istofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject
-lang c

-prog MyBugFinderProject

—author jsmith

-sources "mymain.c, funAlgebra.c, funGeometry.c"
-0S-target no-predefined-0S

-target x86 64

-compiler generic

-dos

-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file 1istofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

2-30

-options-file

See Also

polyspaceBugFinder | polyspaceConfigure

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-31

2 Polyspace Command-Line Options

2-32

-preemptable-interrupts

Specify functions that represent preemptable interrupts

Syntax

-preemptable-interrupts functionl|, function2(,...]]

Description

This option affects a Bug Finder analysis only.

-preemptable-interrupts functionl[, function2[, ...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts on page 1-117, preemptable or nonpreemptable.

To specify a function as a preemptable interrupt, you must first specify the following
options:

* Configure multitasking manually

* Interrupts (-interrupts): Specify the function name.

The functions that you specify must have the prototype:

void function name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details

(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

-preemptable-interrupts

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

2-33

2 Polyspace Command-Line Options

-prog

Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (), dashes (-), or periods (.).

Examples

Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also

—author | -date | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-34

-report-output-name

-report-output-name

Specify name of report

Syntax

—report-output-name reportName

Description

-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog Template.Format:

* Progis the name of the project specified by -prog.
* TemplateName is the type of report template specified by ~report-template.

+ Format is the file extension for the report specified by ~-report-output-format.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer
-report-output-name Airbag v3.doc

See Also

Output format (-report-output-format) | Bug Finder and Code Prover
report (-report-template) | polyspaceBugFinder

2-35

2 Polyspace Command-Line Options

Topics
“Run Local Analysis from DOS or UNIX Command Line”
“Generate Reports”

2-36

-results-dir

-results-dir

Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at the
command line is the current folder.

If you are running analysis in the user interface, see “Specify Results Folder”.

Examples

Specify to store your results in the RESULTS folder.
polyspace-bug-finder-nodesktop -results-dir RESULTS ...

export RESULTS=results 'date + %d%B SHH%M %A’
polyspace-bug-finder-nodesktop -results-dir 'pwd'/SRESULTS

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-37

2 Polyspace Command-Line Options

2-38

-scheduler

Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also

polyspaceBugFinder | polyspaceJobsManager | polyspaceJobsManager

Topics
“Run Remote Analysis at the Command Line”

-sources

-Sources

Specify source files

Syntax

-sources filel[,file2,...]
-sources filel -sources file2

Description

-sources filel[,file2,...] or —sources filel -sources fileZ2 specifiesthe
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c
-sources funAlgebra.c -sources funGeometry.c

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-39

2 Polyspace Command-Line Options

2-40

-sources-list-file

Specify file containing list of sources

Syntax

-sources-list-file file path

Description

-sources-list-file file path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

This option is available only in batch analysis mode.

Examples

Run analysis on files listed in files.txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
-sources-list-file "C:\Analysis\files.txt"

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
-sources-list-file "/home/polyspace/files.txt"

See Also

polyspaceBugFinder

-sources-list-file

Topics

“Run Remote Analysis at the Command Line”

2-41

2 Polyspace Command-Line Options

2-42

-submit-job-from-previous-compilation-results

Specify that the analysis job must be resubmitted without recompilation

Syntax

-submit-job-from-previous-compilation-results

Description

-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. If a remote analysis stops after compilation, for instance because of
communication problems between the server and client computers, use this option.

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The Parallel Computing Toolbox™ software submits the analysis job to the MATLAB
job scheduler (MJS) on the head node of the MATLAB Distributed Computing Server
cluster.

3 The head node of the MATLAB Distributed Computing Server cluster assigns the
verification job to a worker node, where the remaining phases of the Polyspace
analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

-submit-job-from-previous-compilation-results

Examples

Specify remote analysis with compilation results from a previous analysis.

polyspace-bug-finder-nodesktop -batch -scheduler localhost
-submit-job-from-previous-compilation-results

See Also

polyspaceBugFinder

Topics
“Run Remote Batch Analysis”
“Run Remote Analysis at the Command Line”

2-43

2 Polyspace Command-Line Options

2-44

-termination-functions

Specify process termination functions

Syntax

-termination-functions functionl|[, function2[,...]]

Description

-termination-functions functionl|, function2[, ...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not
defined in your code.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my exit terminates the program.

void my exit();

double reciprocal (int wval) {
if (val==0)
my exit();
return (1/val);

}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my exit

http://www.cplusplus.com/reference/cstdlib/exit/

-termination-functions

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-45

2 Polyspace Command-Line Options

2-46

-tmp-dir-in-results-dir

Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files”.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

-v[ersion]

-v[ersion]

Display Polyspace version number

Syntax

-v
-version

Description

-v or —version displays the version number of your Polyspace product.

Examples

Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also

polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2-47

2 Polyspace Command-Line Options

2-48

-xml-annotations-description

Apply custom code annotations to Polyspace analysis results

Syntax

-xml-annotations-description file path

Description

-xml-annotations-description file path uses the annotation syntax defined in
the XML file located in file path to interpret code comments in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and
hide results with annotations that use your syntax. If you run Polyspace at the command
line, file path is the absolute path or path relative to the folder from which you run
the command. If you run Polyspace through the user interface, file path is the
absolute path.

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane. See
Other.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format,
you can map and import that format to Polyspace.

-xml-annotations-description

Examples

Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero div.c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My rule 50, 51
{
int 1i;

int 3 = 1;

i=1024 / (3 - p);
return 1i;

}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50

int x=func(2);

return x;
}
The code comments My rule 50, 51 andMy_ rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

polyspace-bug-finder-nodesktop -sources source path -misra3 all
source path is the path to zero div.c.
The annotated violations appear in the Results List pane. You must review and justify

them again.

2-49

2 Polyspace Command-Line Options

Ere
All results v | Ve New v <@ 5 @‘ Showing 3/9 + _[m
Family ¥ Information o S.. » Status » Comment #include <stdic.h>
[=-MISRA C:2012 9
[1.Dir 4 Code desian 6 f* Viplation of Misra C:2012
[-Dir 4.6 typedefs that indicate size and signedness should be used in place of the basic numerical types. & rules £.4 and 2.7 on the next
£-8.4 A compatible dedaration shall be visible when an ebject or function with external linkage is defined, 2
Category: Required Unset Unreviewed vint Vt"1.:|.ut: {vint p) /My _rule 50, 51
- Category: Reguired Unzet Unreviewed I
[=-8. 7 Functions and objects should not be defined with external linkage if they are referenced in only one translation vim: ir
e Category: Advisory Unset Unreviewed Tt 3 =1:

i=1024 7 (] - p):

return ir

/* Viglation of Misra C:2012
rule §.4 on the next line of
code */

¥ ¥

int main{void){ //My rule 50
7
int x=funci{2);

return x;

This XML example defines the annotation format used in zero div.c and maps it to
the Polyspace annotation syntax:

* The format of the annotation is the keyword My rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

* Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

2-50

-xml-annotations-description

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="annotations xml schema.xsd"
Group="example annotation">

<Expressions Search For Keywords="My rule"
Separator Result Name="," >

<!-- This section defines the annotation syntax format -->
<Expression Mode="SAME LINE"
Regex="My rule\s (\w+ (\s*,\s*\w+)*)"
Rule Identifier Position="1"

/>
</Expressions>
<!-- This section maps the user annotation to the Polyspace
annotation syntax -->
<Mapping>

<Result Name Mapping Rule Identifier="50" Family="MISRA-C3" Result Name
<Result Name Mapping Rule Identifier="51" Family="MISRA-C3" Result Name
</Mapping>

</Annotations>

="8.4"/>
="8.7"/>

To import the existing annotations and apply them to the corresponding Polyspace
results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations description.xml, for instance in C: \Polyspace workspace
\annotations\.

2 Rerun the analysis on zero_div.c by using the command:
polyspace-bug-finder-nodesktop -sources source path -misra3 all *
-xml-annotations-desriptions *

C:\Polyspace workspacelannotations\annotations_ description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

2-51

2 Polyspace Command-Line Options

All results o | T Mew v <E 5 @ Showing 6/9 + zero_div.ic X
Family ¥ Information # 5. @ Status & Comment #include <stdio.h>
E-MISRA C:20126
™ Dir 4 Code design f* Viclation of Misra C:2012
[#-Dir 4.6 typedefs that indicate size and signedness should be used in place of the basic numerical types. & rules £.4 and 8.7 on the next
line of code. */

7 7
int func(int p) //My rule 50, 51

{
v .
int i
v)
int j = 1;
i=1024 7 (3 - p):
return i;
}

/* Viclation of Misra C:2012
rule 8.4 on the next line of
code */

7

int main{veid){ //My_rule 50
int x=func(2):
return x;

See Also

Topics
“Define Custom Annotation Format”
“Annotate and Hide Known or Acceptable Results”

Introduced in R2017b

2-52

Defects

3 Defects

*this not returned in copy assignment operator

operator= method does not return a pointer to the current object

Description

*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator= (b) is not returning the assignee a following
the assignment.

For instance:
* The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

* The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)

{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.
Risk

Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

*this not returned in copy assignment operator

+ If the operator= returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial
assignment of data members, following an assignment a=b, the data members of a
and b are different. If you or another user of your class read the data members of the
return value and expect the data members of a, you might have unexpected results.
For an example, see “Return Value of operator= Same as Argument” on page 3-3.

+ Ifthe operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b) .modifyValue (), you modify a copy of a instead of a itself.

Fix

Return *this from your assignment operators.

Examples

Return Value of operator= Same as Argument

class MyClass {
public:
MyClass (bool b, int i): m b(b), m i(i) {}
const MyClass& operator=(const MyClassé& obj) {
if (&obj!=this) {
/* Note: Only m i is copied. m b retains its original value. */
m i = obj.m i;
}
return obj;
}
bool isOk() const { return m b;}
int getI() const { return m i;}
private:
bool m b;
int m i;

b

volid main () {
MyClass rO(true, 0), rl(false, 1);
/* Object calling isOk is r0 and the if block executes. */
if ((rl = r0).isOk()) {

3 Defects

/* Do something */

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assighment r1 = r0 returns r0 and not r1. Because the
operator= does not copy the data member m b, the value of rO.m b and r1.m b are
different. The following unexpected behavior occurs.

What You Might Expect What Actually Happens

* The statement (r1 = r0).1is0k() * The statement (r1 = r0).1is0k()
returns rl.m b which has value false returns r0.m_b which has value true

* The if block does not execute. * The if block executes.

One possible correction is to return *this from operator=.

class MyClass {
public:
MyClass (bool b, int i): m b(b), m i(i) {}
const MyClass& operator=(const MyClassé& obj) {
if (&obj!=this) {

/* Note: Only m i is copied. m b retains its original value.

m i = obj.m i;

}

return *this;
}
bool isOk() const { return m b;}
int getI() const { return m 1i;}

private:

bool m b;
int m i;

b

volid main () {
MyClass rO(true, 0), rl(false, 1);

/* Object calling isOk is r0 and the if block executes. */
if ((rl = r0).isOk()) |
/* Do something */

3-4

*/

*this not returned in copy assignment operator

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: RETURN NOT REF TO THIS
Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-5

3 Defects

Abnormal termination of exit handler

Exit handler function interrupts the normal execution of a program

Description

Abnormal termination of exit handler looks for registered exit handlers. Exit
handlers are registered with specific functions such as atexit, (WinAPI) onexit, or
at quick exit (). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) onexit

Risk

If your exit handler terminates your program, you can have undefined behavior.
Abnormal program termination means other exit handlers are not invoked. These
additional exit handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit
#include <stdlib.h>

volatile int some condition = 1;
void demo exitl (void)
{
/* ... Cleanup code ... */
return;

Abnormal termination of exit handler

vold exitabnormalhandler (void)
{
if (some condition)
{
/* Clean up */
exit (0);
}

return;

int demo install exitabnormalhandler (void)

{

if (atexit(demo exitl) != 0) /* demo exitl () performs additional cleanup */

{

/* Handle error */
if (atexit (exitabnormalhandler) != 0)

/* Handle error */
}
/* ... Program code ... */
return 0;

}

In this example, demo _install exitabnormalhandler registers two exit handlers,
demo_exitl and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo _exitl. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

#include <stdlib.h>

volatile int some condition = 1;
void demo exitl (void)
{
/* ... Cleanup code ... */
return;

3-7

3 Defects

}
vold exitabnormalhandler (void)
{
if (some condition)
{
/* Clean up */
/* Return normally */

}

return;

}

int demo install exitabnormalhandler (void)

{

if (atexit(demo_exitl) != 0) /* demo_exitl() continues clean up */
{

/* Handle error */

}

if (atexit (exitabnormalhandler) != 0)

{

/* Handle error */

}
/* ... Program code ... */
return O;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: EXIT ABNORMAL HANDLER
Impact: Medium

CWE ID: 705

CERT C ID: ENV32-C

Introduced in R2016b

http://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/x/voAg

Absorption of float operand

Absorption of float operand

One addition or subtraction operand is absorbed by the other operand

Description

Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk
Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

+ If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.

+ If the ranges are not what you expect, in your code, trace back to see where the ranges
come from. To begin your traceback, search for instances of the operand in your code.
Browse through previous instances of the operand and determine where the
unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual

3 Defects

3-10

rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2P at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other Operand
#include <stdlib.h>

float get signal (void);
void do operation(float);

float input signall (void) {
float temp = get signal();
if(temp > 0. && temp < 1e-30)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE) ;

}

float input signal2(void) {
float temp = get signal();
if(temp > 1.)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE) ;

}
volid main () {

float signall = input signall();
float signal2 = input signal2();

Absorption of float operand

float super signal = signall + signal2;
do operation (super signal);

}

In this example, the defect appears on the addition because the operand signall isin
the range (0, 1e-30) but signal2 is greater than 1.

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get signal (void);
void do_operation(float);

float input signall (void) {
float temp = get signal();
if (temp > 0. && temp < 1le-30)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE) ;

}

void main () {
float signall = input signall();
do_operation(signall);

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0, 1e-2) is imposed
on signal?2 so that it is not always negligibly small as compared to signall.

#include <stdlib.h>

float get signal (void);
void do_ operation(float);

float input signall (void) {

3-11

3 Defects

float temp = get signal();
if(temp > 0. && temp < le-2)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE) ;

}

float input signal2(void) {
float temp = get signal();
if(temp > 1.)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE) ;

}

volid main () {
float signall = input signall();
float signal2 = input signal2();
float super signal = signall + signal2;
do operation(super signal);

Result Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: FLOAT ABSORPTION
Impact: High

CWE ID: 682, 873

CERT C ID: FLP00-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

3-12

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/VQIFAQ

Absorption of float operand

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2016b

3-13

3 Defects

3-14

Alignment changed after memory reallocation

Memory reallocation changes the originally stricter alignment of an object

Description

Alignment changed after memory reallocation occurs when you use realloc () to
modify the size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc () can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix
To reallocate memory:

1 Resize the memory block.

* In Windows, use aligned realloc () with the alignment argument used in
_aligned malloc () to allocate the original memory block.

+ In UNIX/Linux, use the same function with the same alignment argument used
to allocate the original memory block.

2 Copy the original content to the new memory block.

3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

Alignment changed after memory reallocation

Examples

Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func (void)

{

size t resize = SIZE1024;

size t alignment = 1 << 12; /* 4096 bytes alignment */
int *ptr = NULL;

int *ptrl;

/* Allocate memory with 4096 bytes alignment */
if (posix memalign((void **)é&ptr, alignment, sizeof(int)) != 0)
{

/* Handle error */

}

/*Reallocate memory without using the original alignment.
ptrl may not be 4096 bytes aligned. */

ptrl = (int *)realloc(ptr, sizeof (int) * resize);
if (ptrl == NULL)
{
/* Handle error */
}

/* Processing using ptrl */

/* Free before exit */
free (ptrl);

3-15

3 Defects

3-16

In this example, the allocated memory is 4096-bytes aligned. realloc () then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

When you reallocate the memory, use posix memalign () and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func (void)

{
size t resize = SIZE1024;
size t alignment = 1 << 12; /* 4096 bytes alignment */
int *ptr = NULL;

/* Allocate memory with 4096 bytes alignment */
if (posix memalign((void **)s&ptr, alignment, sizeof(int)) != 0)
{

/* Handle error */

}

/* Reallocate memory using the original alignment. */
if (posix memalign((void **)s&ptr, alignment, sizeof (int) * resize) != 0)
{
/* Handle error */
free (ptr);
ptr = NULL;
}

/* Processing using ptr */

/* Free before exit */
free (ptr);

Result Information
Group: Dynamic memory
Language: C | C++
Default: On

Alignment changed after memory reallocation

Command-Line Syntax: ALIGNMENT CHANGE

Impact: Low
CERT C ID: MEM36-C

See Also

Introduced in R2017b

3-17

https://www.securecoding.cert.org/confluence/x/4YEzAg

3 Defects

Alternating input and output from a stream without
flush or positioning call

Undefined behavior for input or output stream operations

Description

Alternating input and output from a stream without flush or positioning call
occurs when:

* You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

* You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call £f1ush () or a file positioning function such as fseek () or fsetpos () between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update
stream.

Examples
Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

3-18

Alternating input and output from a stream without flush or positioning call

void initialize data(char* data, size t s) {};
const char *temp filename = "/tmp/demo.txt";

void func ()

{
char data[SIZE20];
char append data[SIZE20];
FILE *file;

file = fopen(temp filename, "a+");
if (file == NULL)
{

/* Handle error. */;

initialize data(append data, SIZE20);

if (fwrite(append data, 1, SIZE20, file) != SIZE20)
{
(void) fclose (file) ;
/* Handle error. */;
}
/* Read operation after write without
intervening flush. */
if (fread(data, 1, SIZE20, file) < SIZE20)

{
(void) fclose (file) ;
/* Handle error. */;

if (fclose(file) == EOF)
{

/* Handle error. */;

In this example, the file demo . txt is opened for reading and appending. After the call to
fwrite (), acall to fread () without an intervening flush operation is undefined
behavior.

3-19

3 Defects

3-20

After writing data to the file, before calling fread (), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize data(char* data, size t s) ({};
const char *temp filename = "/tmp/demo.txt";

void func ()

{
char data[SIZE20];
char append data[SIZE20];
FILE *file;

file = fopen(temp_filename, "a+");
if (file == NULL)
{

/* Handle error. */;

initialize data(append data, SIZEZ20);

if (fwrite(append data, 1, SIZE20, file) != SIZE20)
{
(void) fclose (file) ;
/* Handle error. */;
}
/* Buffer flush after write and before read */
if (fflush(file) != 0)
{
(void) fclose (file) ;
/* Handle error. */;
}
if (fread(data, 1, SIZE20, file) < SIZE20)
{
(void) fclose (file) ;
/* Handle error. */;

if (fclose(file) == EOF)
{

/* Handle error. */;

Alternating input and output from a stream without flush or positioning call

Result Information

Group:Programming

Language: C | C++

Default: On

Command-Line Syntax: IO INTERLEAVING
Impact: Low

CERT C ID: FI039-C

ISO/IEC TS 17961 ID: iocileave

See Also

Introduced in R2017b

3-21

https://www.securecoding.cert.org/confluence/x/tQA1

3 Defects

Arithmetic operation with NULL pointer

Arithmetic operation performed on NULL pointer

Description

Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error

#include<stdlib.h>

int Check Next Value(int *loc, int wval)
{
int *ptr = loc, found = 0;

if (ptr==NULL)
{

ptr++;
/* Defect: NULL pointer shifted */

if (*ptr==val) found=1l;
}

return (found) ;

}
When ptr is a NULL pointer, the code enters the i f statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.
One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

3-22

Arithmetic operation with NULL pointer

int Check Next Value(int *loc, int val)

{
int *ptr = loc, found = 0;

/* Fix: Perform operation when ptr is not NULL */
if (ptr!=NULL)
{
ptr++;

if (*ptr==val) found=1l;
}

return (found) ;

}

Check Information

Group: Static memory

Language: C | C++

Default: Off

Command-Line Syntax: NULL. PTR ARITH

Impact: Low
CERT C ID: EXP34-C
ISO/TEC TS 17961 ID: nullref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Null pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-23

https://www.securecoding.cert.org/confluence/x/PAw

3 Defects

3-24

Array access out of bounds

Array index outside bounds during array access

Description

Array access out of bounds occurs when an array index falls outside the range
[0...array size-1] during array access.

Examples

Array Access Out of Bounds Error

#include <stdio.h>

vold fibonacci (void)

{
int i;
int fib[10];

for (i = 0; 1 < 10; i++)
{

if (1 < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
}
printf ("The 10-th Fibonacci number is %i .\n", fib[i]);

/* Defect: Value of i is greater than allowed value of 9 */

}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through 1.

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

Array access out of bounds

#include <stdio.h>

volid fibonacci (void)

{
int i;
int fib[10];

for (i = 0; 1 < 10; 1i++)
{

if (i < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];

}

/* Fix: Print fib[9] instead of fib[10] */
printf ("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses £ib[9] instead of £ib[10].

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: OUT BOUND ARRAY

Impact: High

CWE ID: 119, 466

CERT C ID: API02-C, ARR00-C, ARR30-C, ARR33-C, ARR38-C, MSC15-C, STR31-C
ISO/TEC TS 17961 ID: invptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Pointer access out of bounds

3-25

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/466.html
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE

3 Defects

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-26

Array access with tainted index

Array access with tainted index

Array index from unsecure source possibly outside array bounds

Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

+ Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
+ Buffer overflow — writing to memory after the end of a buffer.
+ Over-reading a buffer — accessing memory after the end of the targeted buffer.

* Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it
1s inside the array range.

Examples

Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE1007];

3-27

3 Defects

int taintedarrayindex(int num) {
return tab[num];

}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex (int num) {
if (num >= 0 && num < SIZE100) {
return tab[num];
} else {
return -9999;
t

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED ARRAY INDEX

Impact: Medium

CWE ID: 121, 124, 125, 129

CERT C ID: INT04-C, ARR30-C, AP100-C, AP102-C
ISO/TIEC TS 17961 ID: invptr

See Also

Loop bounded with tainted value | Pointer dereference with tainted
offset | Tainted size of variable length array

Topics
“Navigate to Root Cause of Defect”

3-28

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg

Array access with tainted index

“Review and Fix Results”

Introduced in R2015b

3-29

3 Defects

Assertion

Failed assertion statement

Description

Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note Polyspace does not flag assert (0) as an assertion defect because these statements
are commonly used to disable certain sections of code.

Examples

Check Assertion on Unsigned Integer
#include <assert.h>

void asserting x(unsigned int theta) {
theta =+ 5;
assert (theta < 0);

}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of thetais [5..MAX INT]. theta is always greater
than zero.

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting x(unsigned int theta) {

3-30

Assertion

theta =+ 5;
assert (theta > 0);

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting x(int theta) {
theta = -abs (theta);
assert (theta < 0);

Asserting Zero
#include <assert.h>
#define FLAG 0

int main (void) {
int i test z = 0;

float f test z (float)i test z;

assert (i test z);
assert (f test z);
assert (FLAG) ;

return 0;

In this example, Polyspace does not flag assert (FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert (0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert (0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value
equal to zero, as seen in the example with assert (i test z) and assert(f test z).

3-31

3 Defects

Check Information
Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: ASSERT
Impact: High

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-32

Bad file access mode or status

Bad file access mode or status

Access mode argument of function in fopen or open group is invalid

Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status
flags as arguments. For instance, for the open function, examples of valid:

* Access modes include O RDONLY, O WRONLY, and O RDWR
* File creation flags include O CREAT, O EXCL, O NOCTTY, and O TRUNC.

* TFile status flags include O_APPEND, O ASYNC, O _CLOEXEC, O DIRECT, O _DIRECTORY,
O_LARGEFILE, O NOATIME, O NOFOLLOW, O NONBLOCK, O NDELAY, O SHLOCK,
O EXLOCK, O FSYNC, O SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix

You pass an empty or fopen has undefined Pass a valid access mode to
invalid access mode to the |behavior for invalid access |fopen.

fopen function. modes.

According to the ANSI C Some implementations
standard, the valid access |allow extension of the access

modes for fopen are: mode such as:
 r,rt « GNU: rb
+cmxe, ccs=utf
* w,w+t
. + Visual C++: a+t, where
2 t specifies a text mode.
* rb, wb, ab

However, your access mode
string must begin with one
* rb+, wb+, ab+ of the valid sequences.

* r+b, wtb, atb

3-33

3 Defects

Situation

Risk

Fix

You pass the status flag
O_APPEND to the open
function without combining
it with either O WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without

O _WRONLY or O RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical
error.

Pass either O APPEND |
O_WRONLY or O_APPEND |
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
O ASYNC to the open
function.

On certain
implementations, the mode
O_ASYNC does not enable
signal-driven I/O
operations.

Use the fcntl (pathname,
F_SETFL, O_ASYNC);
instead.

3-34

Examples

Invalid Access Mode with fopen

#include <stdio.h>

void func (void) {
FILE *file =

fopen("data.txt",

"rW") ;

Bad file access mode or status

if (file!=NULL) {
fputs ("new data",file);
fclose(file);

}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func (void) {
FILE *file = fopen("data.txt", "w");
if (file!=NULL) {
fputs ("new data",file);
fclose(file);

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: BAD FILE ACCESS MODE STATUS

Impact: Medium
CWE ID: 628, 686
CERT C ID: EXP37-C, FIO11-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”

3-35

http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/swA1

3 Defects

Introduced in R2015b

3-36

Bad order of dropping privileges

Bad order of dropping privileges

Dropped higher elevated privileges before dropping lower elevated privileges

Description

Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix
Respect this order of dropping elevated privileges:

* Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

* Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First

#define BSD SOURCE

#include <sys/types.h>
#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()

3-37

3 Defects

static void sanitize privilege drop check(uid t olduid, gid t oldgid)

{

}

if (seteuid(olduid) != -1)

{
/* Privileges can be restored, handle error */
fatal error();

if (setegid(oldgid) != -1)

/* Privileges can be restored, handle error */
fatal error();

void badprivilegedroporder (void) {

uid t
newuid = getuid(),
olduid = geteuid();
gid t
newgid = getgid(),
oldgid = getegid();

if (setuid(newuid) == -1) {
/* handle error condition */
fatal error();

}

if (setgid(newgid) == -1) {
/* handle error condition */
fatal error();

}

if (olduid == 0) {
/* drop ancillary groups IDs only possible for root */
if (setgroups(l, &newgid) == -1) {

/* handle error condition */
fatal error();

sanitize privilege drop check(olduid, oldgid);

In this example, there are two privilege drops made in the incorrect order. setgid

attempts to drop group privileges. However, setgid requires the user privileges, which

were dropped previously using setuid, to perform this function. After dropping group

3-38

Bad order of dropping privileges

privileges, this function attempts to drop ancillary groups privileges by using
setgroups. This task requires the higher primary group privileges that were dropped
with setgid. At the end of this function, it is possible to regain group privileges because
the order of dropping privileges was incorrect.

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define BSD SOURCE

#include <sys/types.h>
#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()

static void sanitize privilege drop check(uid t olduid, gid t oldgid)
{
if (seteuid(olduid) != -1)
{
/* Privileges can be restored, handle error */
fatal error();

if (setegid(oldgid) != -1)

/* Privileges can be restored, handle error */
fatal error();
}
}
void badprivilegedroporder (void) {
uid t
newuid = getuid(),
olduid = geteuid();
gid t
newgid = getgid(),
oldgid = getegid();

if (olduid == 0) {
/* drop ancillary groups IDs only possible for root */
if (setgroups(l, &newgid) == -1) {

/* handle error condition */
fatal error();

3-39

3 Defects

3-40

}

if (setgid(getgid()) == -1) {
/* handle error condition */
fatal error();

}

if (setuid(getuid()) == -1) {
/* handle error condition */
fatal error();

}

sanitize privilege drop check(olduid, oldgid);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: BAD PRIVILEGE DROP_ORDER
Impact: High

CWE 1ID: 250, 696

CERT C ID: POS36-C

Introduced in R2016b

http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/696.html
https://www.securecoding.cert.org/confluence/x/dgL7

Base class assignment operator not called

Base class assignment operator not called

Copy assignment operator does not call copy assignment operators of base subobjects

Description

Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk

If this defect occurs, unless you are initializing the base class data members explicitly in

the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix

Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples
Base Class Copy Assignment Operator Not Called

class Base(O {
public:

3-41

3 Defects

3-42

BaseO () ;

virtual ~BaseO ()

Base0& operator=
private:

int i;

(const BaselO&) ;

b

class Basel {
public:

Basel () ;

virtual ~Basel ()

Basel& operator=
private:

int i;

(const Basel&);

b

class Derived: public BaseO, Basel {
public:

Derived () ;

~Derived() ;

Derivedé& operator=(const Derived& d) {

if (&d == this) return *this;
BaseO::operator=(d) ;
j =4d. 3;

return :this;
}
private:
int 3
}s

In this example, the class Derived is derived from two classes Base0 and Basel. In the
copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Basel is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

* To find the derived class definition, right-click the derived class name and select Go
To Definition.

+ To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

Base class assignment operator not called

* To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Basel.

class BaseO {
public:

BaseO () ;

virtual ~Base0 ()

Base(0& operator=
private:

int 1i;

(const Base0&) ;

b

class Basel {
public:

Basel () ;

virtual ~Basel ()

Basel& operator=
private:

int 1i;

(const Basel&);

b

class Derived: public BaseO, Basel {
public:
Derived () ;
~Derived() ;
Derivedé& operator=(const Deriveds& d) {
if (&d == this) return *this;
Base0: :operator=(d);
Basel: :operator=(d);
j =d._3;
return *this;

3-43

3 Defects

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: MISSING BASE ASSIGN OP CALL
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-44

Base class destructor not virtual

Base class destructor not virtual

Class cannot behave polymorphically for deletion of derived class objects

Description

Base class destructor not virtual occurs when a class has virtual functions but not
a virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples

Base Class Destructor Not Virtual

class Base {

public:

Base(): Db(0) {};

virtual void update() { b += 1;};
private:

int by

3-45

3 Defects

3-46

class Derived: public Base {

public:

Derived(): _d(0) {};

~Derived() { d = 0;};

virtual void update() {_d += 1;};
private:

int d;

b

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

+ To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

+ To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References.
Browse through search results that start with Base* or Bases to locate pointers or
references to the base class. You can then see if you are using a pointer or reference to
point to a derived class object.

One possible correction is to declare a virtual destructor for the class Base.

class Base {

public:
Base(): Db(0) {};
virtual ~Base() { b = 0;};
virtual void update() { b += 1;};
private:

int b;
bi

class Derived: public Base {
public:

Derived() :

~Derived ()

_d(0) {};
{ d=20;};

Base class destructor not virtual

virtual void update() {_d += 1;};

private:
int d;

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: DTOR NOT VIRTUAL
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

3-47

https://www.securecoding.cert.org/confluence/x/UQBO

3 Defects

3-48

Bitwise and arithmetic operation on the same data

Statement with mixed bitwise and arithmetic operations

Description

Bitwise and arithmetic operation on a same data detects statements with bitwise
and arithmetic operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition

unsigned int bitwisearithmix ()
{
unsigned int var = 50;
var += (var << 2) + 1;
return var;

}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

Bitwise and arithmetic operation on the same data

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

unsigned int bitwisearithmix ()
{
unsigned int var = 50;
var = var * 5 +1;
return var;

Result Information

Group: Good Practice

Language: C | C++

Default: Off

Command-Line Syntax: BITWISE ARITH MIX

Impact: Low
CWE ID: 710
CERT C ID: INT14-C

Introduced in R2016b

3-49

http://cwe.mitre.org/data/definitions/710.html
https://www.securecoding.cert.org/confluence/x/dgAV

3 Defects

3-50

Bitwise operation on negative value

Undefined behavior for bitwise operations on negative values

Description

Bitwise operation on negative value detects bitwise operators (>>, ~, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

+ Bitwise operations on negative values are compiler-specific.

+ Unexpected calculations can lead to additional vulnerabilities, such as buffer
overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples

Right-Shift of Negative Integer

#include <stdio.h>
#include <stdarg.h>

static void demo sprintf (const char *format, ...)
{

int rc;

va list ap;

char buf[sizeof ("256")1];

Bitwise operation on negative value

va_ start (ap, format);

rc = vsprintf (buf, format, ap):;

if (rc == -1 || rc >= sizeof (buf)) {
/* Handle error */

}

va_end(ap) ;

}

void bug bitwiseneg/()

{
int stringify = 0x80000000;
demo_sprintf ("%u", stringify >> 24);

In this example, the statement demo sprintf ("$u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 tobe 0x80. However,
the actual result is Oxfff£££80 because stringify is signed and negative. The sign bit
is also shifted.

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo sprintf (const char *format, ...)
{

int rc;

va list ap;

char buf[sizeof ("256")1];

va_ start (ap, format);

rc = vsprintf (buf, format, ap);

if (rc == -1 || rc >= sizeof (buf)) {
/* Handle error */

}

va_end(ap) ;

}

void corrected bitwiseneg()

{
unsigned int stringify = 0x80000000;

3-51

3 Defects

demo_sprintf ("%u", stringify >> 24);

Result Information

Group: Numerical

Language: C | C++

Default: Off

Command-Line Syntax: BITWISE NEG

Impact: Medium
CWE ID: 682, 758
CERT C ID: INT13-C

Introduced in R2016b

3-52

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/BoAD

Buffer overflow from incorrect string format specifier

Buffer overflow from incorrect string format specifier

String format specifier causes buffer argument of standard library functions to overflow

Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size,
an overflow occurs. Overflows can cause unexpected behavior such as memory
corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
char buf[32];

sscanf (str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier $33c
causes a buffer overflow.

One possible correction is to use a smaller precision in the format specifier.

3-53

3 Defects

3-54

#include <stdio.h>

void func (char *str[]) {
char buf[32];
sscanf (str[1], "%32c", buf);

Result Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: STR_FORMAT BUFFER OVERFLOW
Impact: High

CWE ID: 124, 125, 126, 127

CERT C ID: ARR33-C, ARR38-C, STR03-C, STR31-C, STR35-C
ISO/TIEC TS 17961 ID: taintformatio

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/LQY
https://www.securecoding.cert.org/confluence/x/KAE

Call through non-prototyped function pointer

Call through non-prototyped function pointer

Function pointer declared without its type or number of parameters causes unexpected
behavior

Description

Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk

Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix

Before calling the function through a pointer, provide a function prototype.

Examples

Argument Does Not Match Parameter Restriction

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func ptr) ();

extern int getchar wrapper (void);

extern void restricted int sink(int 1i);

/* Integer value restricted to

range [-1, 255] */

extern void restricted float sink(double 1i);

3-55

3 Defects

3-56

/* Double value restricted to > 0.0 */

func ptr generic callback[SIZE2] =
{
(func_ptr)restricted int sink,
(func_ptr)restricted float sink

b

void func(void)
{
int ic;
ic = getchar wrapper();
/* Wrong index used for generic_ callback.
Negative 'int' passed to restricted float sink. */
(*generic callback[1l]) (ic);

In this example, a call through func ptr passes ic as an argument to function
generic callback[1]. The type of ic can have negative values, while the parameter
of generic callback([1] is restricted to float values greater than 0.0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func ptr proto) (int);

extern int getchar wrapper (void);

extern void restricted int sink(int 1i);

/* Integer value restricted to

range [-1, 255] */

extern void restricted float sink(double 1i);
/* Double value restricted to > 0.0 */

func ptr proto generic callback[SIZEZ2] =

Call through non-prototyped function pointer

(func_ptr proto)restricted int sink,
(func_ptr proto)restricted float sink

b

void func (void)
{
int ic;
ic = getchar wrapper();
/* ic passed to function through
properly prototyped pointer. */
(*generic callback[0]) (ic);

}

Result Information

Group: Programming

Language: C

Default: On

Command-Line Syntax: UNPROTOTYPED FUNC CALL
Impact: Medium

ISO/IEC TS 17961 ID: taintnoproto

See Also

Declaration mismatch | Unreliable cast of function pointer

Introduced in R2017b

3-57

3 Defects

3-58

Call to memset with unintended value

memset or wmemset used with possibly incorrect arguments

Description

Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue

Risk

Possible Fix

The second argument is '0"’
instead of 0 or "\0"'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0") .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
"\O0"'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size 1s initialized with
incorrect arguments.

Reverse the order of the
arguments.

Call to memset with unintended value

Issue Risk Possible Fix
The second argument If the second argument Apply a bit mask to the
cannot be represented in a |cannot be represented in a |argument to produce a
byte. byte, and you expect each wrapped or truncated result
byte of a memory block to be |that can be represented in a
filled with that argument, |byte. When you apply a bit
the initialization does not mask, make sure that it
occur as intended. produces an expected result.
For instance, replace
memset (a, -13,
sizeof (a)) with
memset (a, (-13) &
OxXFF, sizeof(a)).
Examples

Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32

void func (void) {
char buf[SIZE];
int ¢ = -2;
memset (buf,

(char)c, sizeof (buf));

}

In this example, (char) c cannot be represented in a byte.

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32

void func (void) {
char buf[SIZE
int ¢ = -2;

1

3-59

3 Defects

3-60

memset (buf, (unsigned char)c, sizeof (buf));

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: MEMSET INVALID VALUE

Impact: Low
CWE ID: 665
CERT C ID: INT31-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of memset with size argument zero

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/RQE

Character value absorbed into EOF

Character value absorbed into EOF

Data type conversion makes a valid character value same as End-of-File (EOF)

Description

Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

* End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()
You then compare the result with EOF.
if ((int)ch == EOF)

The conversion can be explicit or implicit.

+ Wide End-of-File: You perform a data type conversion that can convert a non-WEOF
wide character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to
char, the values UCHAR MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This
rationale also applies to wide character values and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

3-61

3 Defects

3-62

Examples

Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>
#define fatal error() abort()

char func (void)

{

char ch;
ch = getchar();
if (EOF == (int)ch) {

fatal error();

}

return ch;

}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal error() abort()

char func (void)

{

int 1i;
i = getchar();
if (EOF == i) {

fatal error();

}
else {
return (char)i;

}

Character value absorbed into EOF

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: CHAR EOF _CONFUSED
Impact: High

CWE ID: 704

CERT C ID: F1I034-C

ISO/IEC TS 17961 ID: chreof

See Also
Polyspace Results
Errno not checked | Invalid use of standard library integer routine |

Misuse of sign-extended character value | Returned value of a
sensitive function not checked

Introduced in R2017a

3-63

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/dwGKBw

3 Defects

Closing a previously closed resource

Function closes a previously closed stream

Description

Closing a previously closed resource occurs when a function attempts to close a
stream that was closed earlier in your code and not reopened later.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it. Performing the close operation on the FILE* pointer again
can cause unwanted behavior.

Fix

Remove the redundant close operation.

Examples

Closing Previously Closed Resource
#include <stdio.h>

void func (char* data) {
FILE* fp = fopen("file.txt", "w");
if (fp!=NULL) {
if (data)
fputc (*data, fp) ;
else
fclose (fp);
}
fclose (fp);

3-64

Closing a previously closed resource

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp
twice in succession.

One possible correction is to remove the last fclose operation. To avoid a resource leak,
you must also place an fclose operation in the if (data) block.

#include <stdio.h>

void func (char* data) {
FILE* fp = fopen("file.txt", "w");
if (fp!=NULL) {
if (data) {
fputc (*data, fp) ;
fclose (fp);
}

else
fclose (fp);

Result Information

Group: Resource management

Language: C | C++

Default: On

Command-Line Syntax: DOUBLE_RESOURCE_CLOSE
Impact: High

CWE ID: 672

CERT C ID: F1046-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

3-65

http://cwe.mitre.org/data/definitions/672.html
https://www.securecoding.cert.org/confluence/x/KAGQBw

3 Defects

Introduced in R2015b

3-66

Code deactivated by constant false condition

Code deactivated by constant false condition

Code segment deactivated by #if 0 directive or if (0) condition

Description

Code deactivated by constant false condition occurs when a block of code is
deactivated using a #1f 0 directive or i f (0) condition.

Examples

Code Deactivated by Constant False Condition Error

#include<stdio.h>
int Trim Value (int* Arr,int Size,int Cutoff)
{

int Count=0;

for(int i=0;i < Size;i++) {
if (Arr[i]>Cutoff) {
Arr[i]=Cutoff;
Count++;

}

#if O
/* Defect: Code Segment Deactivated */

if (Count==0) {

printf ("Values less than cutoff.");
}
#endif

return Count;

}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

3-67

3 Defects

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if Oto#if 1.

#include<stdio.h>
int Trim Value (int* Arr,int Size,int Cutoff)
{

int Count=0;

for(int 1=0;1 < Size;i++)
{
if (Arr[i]>Cutoff)
{
Arr[i]=Cutoff;
Count++;

}

/* Fix: Replace #if 0 by #if 1 */
#if 1
1f (Count==0)
{
printf ("Values less than cutoff.");

}
#endif

return Count;

}

Check Information

Group: Data flow

Language: C | C++

Default: off

Command-Line Syntax: DEACTIVATED CODE

Impact: Low

3-68

Code deactivated by constant false condition

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Dead code | Unreachable code | Useless if

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-69

3 Defects

3-70

Command executed from externally controlled path

Path argument from an unsecure source

Description

Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk
An attacker can:

* Change the command that the program executes, possibly to a command that only the
attack can control.

+ Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended
location.

Examples

Executing Path from Environment Variable

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
SIZE10 = 10,
SIZE100 = 100,

Command executed from externally controlled path

SIZE128 = 128
b

void bug taintedpathcmd () {
char cmd[SIZE128] = "";
char* userpath = getenv ("MYAPP PATH");

strncpy(cmd, userpath, SIZE100);
strcat (cmd, "/ls *");

/* Launching command */
system(cmd) ;

This example obtains a path from an environment variable MYAPP PATH. systemruns a
command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
SIZE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b

/* Function to sanitize a string */
int sanitize str(char* s, size t n) {
int res = 0;
/* String is ok if */
if (s && n>0 && n<SIZE128) {

/* - string is not null */

/* - string has a positive and limited size */

s[n-1] = '"\0'; /* Add a security \O0 char at end of string */
/* Tainted pointer detected above, used as "firewall" */

res = 1;

}

return res;

3-71

3 Defects

/* Authorized path ids */
enum { PATHO=1, PATH1, PATH2 };

void taintedpathcmd () {
char cmd[SIZE128] = "";

char* userpathid = getenv ("MYAPP PATH ID");
if (sanitize str (userpathid, SIZE100)) {
int pathid = atoi (userpathid);

char path[SIZE128] = "";
switch (pathid) {
case PATHO:
strcpy (path, "/usr/local/my appO");
break;
case PATHI1:
strcpy (path, "/usr/local/my appl");
break;
case PATHZ2:
strcpy (path, "/usr/local/my app2");
break;
default:
/* do nothing */
break;
}
if (strlen(path)>0) {
strncpy(cmd, path, SIZE100);
strcat (cmd, "/ls *");
system(cmd) ;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED PATH CMD
Impact: Medium

CWE ID: 114, 426

3-72

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/426.html

Command executed from externally controlled path

CERT C ID: API00-C, ENV33-C, STR02-C
ISO/IEC TS 17961 ID: syscall

See Also

Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Library loaded from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-73

https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY

3 Defects

3-74

Constant block cipher initialization vector

Initialization vector is constant instead of randomized

Description

Constant block cipher initialization vector occurs when you use a constant for the
initialization vector (IV) during encryption.

Risk

Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable
to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a constant IV to encrypt multiple data
streams that have a common beginning, your data becomes vulnerable to dictionary
attacks.

Fix
Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Initialization Vector

#include <openssl/evp.h>

Constant block cipher initialization vector

#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER CTX *ctx, unsigned char *key) {
unsigned char iv[SIZE16] = {'1', '2', '3', '"4','5','6','b','8','9",
lll,l2l,l3l,l4l,l5l,l6l,l7l};
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

In this example, the initialization vector iv has constants only. The constant
initialization vector makes your cipher vulnerable to dictionary attacks.

One possible correction is to use a strong random number generator to produce the
initialization vector. The corrected code here uses the function RAND bytes declared in
openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZEl6 16

/* Using the cryptographic routines */

int func(EVP_CIPHER CTX *ctx, unsigned char *key) {
unsigned char iv[SIZEl6];
RAND bytes(iv, 16);
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER CONSTANT IV

Impact: Medium
CWE ID: 310, 326, 329

3-75

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

3 Defects

CERT C ID: MSC18-C

Introduced in R2017a

3-76

https://www.securecoding.cert.org/confluence/x/vQFqAQ

Constant cipher key

Constant cipher key

Encryption or decryption key is constant instead of randomized

Description

Constant cipher key occurs when you use a constant for the encryption or decryption
key.

Risk

If you use a constant for the encryption or decryption key, an attacker can retrieve your
key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER CTX *ctx, unsigned char *iv) {
unsigned char key[SIZEl6] = {'1', '2', '3', '4','5','6','b','8','9",

3-77

3 Defects

3-78

lll,l2l,l3l,l4l,l5l,l6l,l7l}’.
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);
1

In this example, the cipher key, key, has constants only. An attacker can easily retrieve
a constant key.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER CTX *ctx, unsigned char *iv) {
unsigned char key[SIZEl6];
RAND bytes (key, 16);
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER CONSTANT KEY
Impact: Medium

CWE 1ID: 310, 320, 321, 326

CERT C ID: MSC18-C

Introduced in R2017a

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Copy constructor not called in initialization list

Copy constructor not called in initialization list

Copy constructor does not call copy constructors of some members or base classes

Description

Copy constructor not called in initialization list occurs when the copy constructor
of a class does not call the copy constructor of the following in its initialization list:

* One or more of its members.

+ Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base class
copy constructor.

Risk

The calls to the copy constructors can be done only from the initialization list. If the calls
are missing, it is possible that an object is only partially copied.

+ If the copy constructor of a member is not called, it is possible that the member is not
copied.

+ If the copy constructor of a base class is not called, it is possible that the base class
members are not copied.

Fix

If you want your copy constructor to perform a complete copy, call the copy constructor of
all members and all base classes in its initialization list.

Examples

Base Class Copy Constructor Not Called

class Base {
public:

3-79

3 Defects

3-80

Base () ;

Base (int) ;

Base (const Baseé&);

virtual ~Base ()
private:

int ib;

b

class Derived:public Base {
public:

Derived () ;

~Derived() ;

Derived (const Derivedé& d): Base (), i(d.i) { }
private:

int i;

b

In this example, the copy constructor of class Derived calls the default constructor, but
not the copy constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some
tips for navigating in the source code:

* To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you see the class
members, including those members whose copy constructors are not called.

+ To navigate to a base class definition, first navigate to the derived class definition. In
the derived class definition, where the derived class inherits from a base class, right-
click the base class name and select Go To Definition.

One possible correction is to call the copy constructor of class Base from the initialization
list of the Derived class copy constructor.

class Base {
public:
Base () ;
Base (int) ;
Base (const Baseé&);
virtual ~Base ()
private:
int ib;

b

Copy constructor not called in initialization list

class Derived:public Base {
public:

Derived () ;

~Derived() ;

Derived(const Derivedé& d): Base(d), i(d.i) { }
private:

int i;

b

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: MISSING COPY CTOR CALL
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Base class assignment operator not called

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-81

3 Defects

3-82

Copy of overlapping memory

Source and destination arguments of a copy function have overlapping memory

Description

Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function.
For instance:

+ If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.
+ If you are using strcpy to copy one string to another, use memmove instead of

strcpy, as follows:

s = strlen(source);
memmove (destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you
must move s+1 bytes instead of s bytes.

Copy of overlapping memory

Examples

Overlapping Copy

#include <string.h>
char str[] = {"ABCDEFGH"};

void my copy () {

strcpy (&str[0], (const char*)&str[2]);

}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off

Command-Line Syntax: OVERLAPPING COPY

Impact: Medium

CWE ID: 475, 628, 687

CERT C ID: EXP43-C, MSC15-C
ISO/TIEC TS 17961 ID: restrict

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Overlapping assignment

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”

3-83

http://cwe.mitre.org/data/definitions/475.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/QQBLBw
https://www.securecoding.cert.org/confluence/x/EoLu

3 Defects

Introduced in R2015b

3-84

Data race

Data race

Multiple tasks perform unprotected non-atomic operations on shared variable

Description

Data race occurs when:

Multiple tasks perform unprotected operations on a shared variable.

At least one task performs a read operation and another task performs a write
operation.

At least one operation is non-atomic. For data race on both atomic and non-atomic
operations, see Data race including atomic operations.

A non-atomic operation can translate into more than one machine instruction. For
instance:

The operation can involve both a read and write operation. For example, var++
involves reading the value of var, increasing the value by one and writing the
increased value back to var.

The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long varl, var2;
varl=var2;

involves two steps in copying the content of var2 to varl on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use 1386 as your Target processor type, the
Pointer size is 32 bits, and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one 1long long or double variable to another as non-
atomic.

The operation can involve writing the return value of a function call to a shared
variable. For example, the operation x=func () involves calling func and writing the
return value of func to x.

3-85

3 Defects

3-86

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Fix

To fix this defect, protect the operations on the shared variable using critical sections or
temporal exclusion. See Critical section details (-critical-section-begin
-critical-section-end) and Temporally exclusive tasks (-temporal-

exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the Iﬁ’ icon. For an example, see below.

Examples

Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin critical section(void);
void end critical section(void);

vold increment (void) {
var++;

}

void taskl (void) {
increment () ;

Data race

}

vold task2 (void) {
increment () ;

}

vold task3 (void) {
begin critical section();
increment () ;
end critical section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1- taskl
112
task2
task3
Critical section details on [Starting routine Ending routine
page 1-124 begin critical section|end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points taskl, task2,task3
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

In this example, the tasks taskl, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

* Reading var.

* Writing an increased value to var.

These machine instructions, when executed from taskl and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from taskl can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

3-87

3 Defects

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

Therefore, the three tasks are operating on a shared variable without common
protection. In your result details, you see each pair of conflicting function calls.

Access Access Protections Task File
Read No protection task1() data_race .c
Write (Mon atomic) No protection task2() data_race .c
Operation might involve multiple machine instructions
Write (Mon atomic) Critical section begin_critical_section...end_critical_section |task3() data_race .c
Operation might involve multiple machine instructions
Read No protection task2() data_race .c
Write (Mon atomic) Critical section begin_critical_section...end_critical_section [task3() data_race .c
Operation might involve multiple machine instructions

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 isin a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions

begin critical section and end critical section.

Access Protections: No protection

data_race .c data_race .c data_race .c
kaskl() increment() var READ
L |
Access Protections: Critical section begin_critical_section...end_critical_section
data_race .c data_race .c data_race .c
kLask3() increment() war WRITE

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

3-88

Data race

You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until taskl leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin critical sectionand end critical section.

int var;

void begin critical section(void);
void end critical section(void);

void increment (void) {
begin critical section();
var++;
end critical section();

void taskl (void) {
increment () ;

void task2 (void) {
increment () ;

void task3 (void) {

increment () ;
}
You can place the call to increment in the same critical section in the three tasks.
When taskl enters its critical section, the other tasks cannot enter their critical
sections until taskl leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin critical sectionandend critical section.

3-89

3 Defects

int var;

void begin critical section(void);
void end critical section(void);

void increment (void) {
var++;

void taskl (void) {
begin critical section();
increment () ;
end critical section();

void task2 (void) {
begin critical section();
increment () ;
end critical section();

void task3 (void) {
begin critical section();
increment () ;
end critical section();

Another possible correction is to make the tasks, taskl, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value

Temporally exclusive taskl task2 task3
tasks on page 1-127

On the command-line, you can use the following:

polyspace-code-prover—-nodesktop
-temporal-exclusions-file "C:\exclusions file.txt"

where the file C:\exclusions file.txt has the following line:

taskl task2 task3

3-90

Data race

Check Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: DATA RACE

Impact: High

CWE ID: 366

CERT C ID: CON00-C, CON09-C, CON32-C, CON43-C, POS49-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Entry points (-entry-points) | Critical section
details (-critical-section-begin -critical-section-end) | Temporally
exclusive tasks (-temporal-exclusions-file) | Disabling all interrupts

(-routine-disable-interrupts -routine-enable-interrupts)

Polyspace Results

Data race including atomic operations | Data race through standard
library function call | Deadlock | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3-91

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/x/FABJAw
https://www.securecoding.cert.org/confluence/x/lAAV
https://www.securecoding.cert.org/confluence/x/aAAV
https://www.securecoding.cert.org/confluence/x/eoBcBQ

3 Defects

3-92

Data race including atomic operations

Multiple tasks perform unprotected operations on shared variable

Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.

2 At least one task performs a read operation and another task performs a write
operation.

If you check for this defect, you can see data races on both atomic and non-atomic
operations. To see data races on non-atomic operations alone, select Data race.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples
Unprotected Atomic Operation on Global Variable from Multiple Tasks

#include<stdio.h>
int var;

void begin critical section(void);
void end critical section(void);

void taskl (void) {
var = 1;

}

void task2 (void) {
int local var;
local var = var;

Data race including atomic operations

printf ("%d", local var);

}

void task3(void) {
begin critical section();
/* Operations in task3 */
end critical section();

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1- taskl
112
task2
task3
Critical section details on |[Starting routine Ending routine
page 1-124 begin critical section|end critical section

On the command-line, you can use the following:
polyspace-bug-finder-nodesktop
-entry-points taskl, task2, task3
-critical-section-begin begin critical section:csl

-critical-section-end end critical section:csl

In this example, the write operation var=1; in task taskl executes concurrently with
the read operation local var=var; intask task2.

task3 uses a critical section that can be reused for the other tasks.

One possible correction is to place these operations in the same critical section:

* wvar=1l; in taskl

* local var=var; in task?2

3-93

3 Defects

When taskl enters its critical section, the other tasks cannot enter their critical sections
until taskl leaves its critical section. Therefore, the two operations cannot execute
concurrently.

To implement the critical section, reuse the already existing critical section in task3.
Place the two operations between calls to begin critical section and
end critical section.

#include<stdio.h>
int var;

void begin critical section();
void end critical section();

void taskl (void) {
begin critical section();
var = 1;
end critical section();

volid task2 (void) {
int local var;
begin critical section();
local var = var;
end critical section();
printf ("%d", local var);

volid task3(void) {
begin critical section();
/* Operations in task3 */
end critical section();

Another possible correction is to make the tasks taskl and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

3-94

Data race including atomic operations

Option Value

Temporally exclusive taskl task2
tasks on page 1-127

On the command-line, use the following:

polyspace-code-prover-nodesktop
-temporal-exclusions-file "C:\exclusions file.txt"

where the file C:\exclusions file.txt has the following line:

taskl task2

Check Information

Group: Concurrency

Language: C | C++

Default: Off

Command-Line Syntax: DATA RACE ALL
Impact: Medium

CWE ID: 366

CERT C ID: CON00-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file) | Disabling all interrupts (-routine-disable-

interrupts -routine-enable-interrupts)

Polyspace Results
Data race | Data race through standard library function call | Deadlock
| Destruction of locked mutex | Double lock | Double unlock | Missing

lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

3-95

http://cwe.mitre.org/data/definitions/366.html

3 Defects

Introduced in R2014b

3-96

Data race through standard library function call

Data race through standard library function call

Multiple tasks make unprotected calls to thread-unsafe standard library function

Description

Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.

2 The calls are not protected using a common protection.
For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

3-97

https://www.securecoding.cert.org/confluence/x/xIEzAg

3 Defects

3-98

Fix

To fix this defect, do one of the following:

Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror (), use strerror r() or strerror s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs
associated with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the lﬁ] icon. For an example, see below.

Examples

Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin critical section(void);
void end critical section(void);

FILE *getFilePointer (void);

void func(FILE *fp) {

fpos t pos;
errno = 0;
if (0 != fgetpos(fp, &pos)) {

char *errmsg = strerror(errno);
printf ("Could not get the file position: %s\n", errmsgqg);

https://www.securecoding.cert.org/confluence/x/xIEzAg

Data race through standard library function call

}

void taskl (void) {
FILE* fptrl = getFilePointer();
func (fptrl);

}

volid task2 (void) {
FILE* fptr2 = getFilePointer();
func (fptr2);

volid task3(void) {
FILE* fptr3 = getFilePointer();
begin critical section();
func (fptr3);
end critical section();

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1- taskl
112
task2
task3
Critical section details on |[Starting routine Ending routine
page 1-124 begin critical section|end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points taskl, task2,task3
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

In this example, the tasks, taskl, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

3-99

3

Defects

Though task3 calls func inside a critical section, other tasks do not use the same

critical section. Operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

! pata race through standard library function call (Impact: High) @
Certain calls to function 'strerror’ can interfere with each other and cause unpredictable results.
To avoid interference, calls to 'strerror’ must be in the same critical section.

Access Access Protections Task File Scope Line

Function call (Non atomic) No protection taskl() data_race_std_lib.c [func() 14
Operation involves function call

Function call (Non atomic) No protection task2() data_race_std_lib.c func() 14

Operation involves function call

Function call (Mon atomic) No protection task2() data_race_std_lib.c [func() 14
Operation involves function call

Function call (Mon atomic) Critical section begin_critical_section...end_critical_section |task3() data_race_std_lib.c [func() 14

Operation involves function call

Function call (Mon atomic) No protection task1() data_race_std_lib.c [func() 14
Operation involves function call

Function call (Non atomic) Critical section begin_critical_section...end_critical_section |task3() data_race_std_lib.c [func() 14

Operation involves function call

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in
a critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin critical sectionand end critical section.

Access Protections: No protection

cert_c.c

@

kask2()

cert_c.c cert_c.c
fFunc() strerror CALL

Access Protections: Critical section begin_critical_section...end_critical_section

cert_c.c

@

Lask3()

cert_c.c cert_c.c
func() strerror CALL

3-100

Data race through standard library function call

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror r which has the same
functionality but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin critical section(void);
void end critical section(void);

FILE *getFilePointer (void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
fpos t pos;
errno = 0;
if (0 !'= fgetpos(fp, &pos)) {
char errmsg[BUFFERSIZE];
if (strerror r(errno, errmsg, BUFFERSIZE) != 0) {
/* Handle error */
}
printf ("Could not get the file position: %s\n", errmsg);

}

void taskl (void) {
FILE* fptrl = getFilePointer();
func (fptrl);

void task2 (void) {
FILE* fptr2 = getFilePointer();
func (fptr2);

void task3(void) {
FILE* fptr3 = getFilePointer();
begin critical section();
func (fptr3);
end critical section();

3-101

3 Defects

3-102

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until taskl leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin critical section and end critical section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin critical section(void);
void end critical section(void);

FILE *getFilePointer (void);

void func(FILE *fp) {
fpos t pos;
errno = 0;
if (0 !'= fgetpos(fp, &pos)) {
char *errmsg = strerror (errno);
printf ("Could not get the file position: %s\n", errmsgqg);

}

void taskl (void) {
FILE* fptrl = getFilePointer();
begin critical section();
func (fptrl);
end critical section();

void task2 (void) {
FILE* fptr2 = getFilePointer();
begin critical section();
func (fptr2);
end critical section();

Data race through standard library function call

volid task3(void) {
FILE* fptr3 = getFilePointer();
begin critical section();
func (fptr3);
end critical section();

Another possible correction is to make the tasks, taskl, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value

Temporally exclusive taskl task2 task3
tasks on page 1-127

On the command-line, you can use the following:

polyspace-code-prover-nodesktop
-temporal-exclusions-file "C:\exclusions_ file.txt"

where the file C:\exclusions file.txt has the following line:

taskl task2 task3

Result Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: DATA RACE STD LIB
Impact: High

CWE ID: 366

CERT C ID: CON33-C

See Also

Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-

3-103

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/x/xIEzAg

3 Defects

begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Destruction of

locked mutex | Double lock | Double unlock | Missing lock | Missing
unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

3-104

Deadlock

Deadlock

Call sequence to lock functions cause two tasks to block each other

Description

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

+ Each CS waits for another CS to end.

* The critical sections (CS) form a closed cycle. For example:

+ CS#1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.

+ CS#1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS
#1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies
between a call to a lock function and a call to an unlock function. When a task my task
calls a lock function my lock, other tasks calling my lock must wait untilmy task
calls the corresponding unlock function. Both lock and unlock functions must have the
form void func (void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Deadlock with Two Tasks

void taskl (void);
void task2 (void);

int var;
void perform task cycle(void) {

3-105

3 Defects

var++;

void begin critical section 1 (void);
void end critical section 1(void);

void begin critical section 2 (void);
void end critical section 2 (void);

void taskl () {
while (1) {
begin critical section 1();
begin critical section 2();
perform task cycle();
end critical section 2();
end critical section 1();

void task2() {
while (1) {
begin critical section 2();
begin critical section 1();
perform task cycle();
end critical section 1();
end critical section 2();

In this example, to emulate multitasking behavior, you must specify the following

options:

Option Specification

Configure

multitasking

manually

Entry points taskl
task2

Critical section Starting routine Ending routine

details begin critical section 1l|end critical section 1
begin critical section 2|end critical section 2

3-106

Deadlock

A Deadlock occurs because the instructions can execute in the following sequence:

taskl calls begin critical section 1.
2 task2callsbegin critical section 2.

3 taskl reaches the instruction begin critical section 2 () ;. Since task2 has
already called begin critical section 2, taskl waits for task2 to call
end critical section 2.

4 task2 reaches the instruction begin critical section 1();.Since taskl has
already called begin critical section 1, task2 waits for taskl to call
end critical section 1.

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both taskl and task2.

void taskl (void);
void task2 (void);
void perform task cycle(void);

void begin critical section 1 (void);
void end critical section 1(void);

void begin critical section 2 (void);
void end critical section 2 (void);

void taskl () {
while (1) {
begin critical section 1();
begin critical section 2();
perform task cycle();
end critical section 2();
end critical section 1();

void task2() {
while (1) {
begin critical section 1();
begin critical section 2();

3-107

3 Defects

perform task cycle();
end critical section 2();
end critical section 1();

Deadlock with More Than Two Tasks

int var;
void performTaskCycle () {
var++;

}

void lockl (void);
void lock2 (void);
void lock3(void);

void unlockl (void) ;
void unlock?2 (void) ;
void unlock3 (void) ;

void taskl (
while (1) {
lockl ()
lock2 () ;
performTaskCycle () ;
unlock2 () ;
unlockl () ;

) A

’

}
}

volid task2(
while (1) {
lock2 ()
lock3();
performTaskCycle () ;
unlock3 () ;
unlock2 () ;

) A

’

3-108

Deadlock

void task3() {
while (1) {
)
)

’

lock3(
lockl (
performTaskCycle () ;
unlockl () ;
unlock3 () ;

}

}

’

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification
Configure multitasking
manually
Entry points taskl
task2
task3
Critical section details |Starting routine Ending routine
lockl unlockl
lock2 unlock?2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

taskl calls lockl.
task2 calls lock2.
task3 calls lock3.

AW N =

taskl reaches the instruction 1ock2 () ;. Since task2 has already called 1ock2,
taskl waits for call to unlock?2.

5 task2 reaches the instruction lock3 () ;. Since task3 has already called 1ock3,
task2 waits for call to unlock3.

6 task3 reaches the instruction lockl () ;. Since taskl has already called lockl,
task3 waits for call to unlockl.

3-109

3 Defects

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 1lockl
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use 1lock1 followed by 1ock2 but not
lock2 followed by lockl.

int var;
void performTaskCycle () {
var++;

}

void lockl (void);
void lock2 (void);
void lock3(void);

void unlockl (void) ;
void unlock?2 (void) ;
void unlock3 (void) ;

void taskl () {
while (1) {
)
)

’

lockl (
lock2 (
performTaskCycle () ;
unlock2 () ;
unlockl () ;

’

}
}

vold task2(

while (1) {
lock2 ()
lock3();
performTaskCycle () ;

) |

’

3-110

Deadlock

unlock3 () ;
unlock2 () ;
}
}

void task3() {
while (1) {
lockl ()
lock3 ()
performTaskCycle () ;
unlock3 () ;

unlockl () ;

’

’

Check Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: DEADLOCK
Impact: High

CWE ID: 833

CERT C ID: CON35-C, POS51-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-

exclusions-file)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

3-111

https://cwe.mitre.org/data/definitions/833.html
https://www.securecoding.cert.org/confluence/x/0gGMAg
https://www.securecoding.cert.org/confluence/x/roBcBQ

3 Defects

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3-112

Dead code

Dead code

Code does not execute

Description

Dead code occurs when a block of code cannot be reached via any execution path. This
defect excludes:

* Code deactivated by constant false condition, which checks for directives
such as #if 0.

* Unreachable code, which checks for code after a control escape such as goto,
break, or return.

* Useless 1if, which checks for if statements that are always true.

Examples

Dead Code from i £-Statement
#include <stdio.h>
int Return From Table (int ch) {
int table[5];
/* Create a table */
for (int i=0;i<=4;i++) {
table[i]=1"2+i+1;

}

if (table[ch]>100){ /* Defect: Condition always false */
return 0;

}
return table[ch];

3-113

3 Defects

3-114

The maximum value in the array table is 4”2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

One possible correction is to remove the i f condition from the code.
#include <stdio.h>
int Return From Table (int ch) {

int tablel[5];

/* Create a table */
for (int 1=0;1<=4;i++) {

table[i]=1i"2+i+1;
}

return table[ch];

Dead Code for if with Enumerated Type

typedef enum 7Suit {UNKNOWN SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void) ;
void do_something(suit s);

void bridge (void)
{
suit card = nextcard();
if ((card < SPADES) || (card > CLUBS))
card = UNKNOWN SUIT;

if (card > 7) {
do_something(card) ;

The type suit is enumerated with five options. However, the conditional expression
card > 7 always evaluates to false because card can be at most 5. The content in the
if statement is not executed.

Dead code

One possible correction is to change the if-condition in the code. In this correction, the 7

is changed to HEART to relate directly to the type of card.

typedef enum suit {UNKNOWN SUIT, SPADES,
suit nextcard(void);
void do_something(suit s);

void bridge (void)
{

sult card = nextcard():;
if ((card < SPADES) || (card > CLUBS))
card = UNKNOWN SUIT;

if (card > HEARTS) {
do something(card) ;

}

Check Information

Group: Data flow

Language: C | C++

Default: On

Command-Line Syntax: DEAD CODE
Impact: Low

CWE ID: 561

CERT C ID: MSC01-C, MSC07-C, MSC12-C
ISO/TEC TS 17961 ID: swtchdflt

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results

CLUBS} suit;

Code deactivated by constant false condition | Unreachable code |

Useless if

3-115

http://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

3 Defects

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-116

Deallocation of previously deallocated pointer

Deallocation of previously deallocated pointer

Memory freed more than once without allocation

Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Examples

Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate and free(void)

{

int* pi = (int*)malloc(sizeof (int));
if (pi == NULL) return;

*pi o= 2;

free (pi);

free (pi);

/* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second
free statement on pi releases a block of memory that has been freed already.

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate and free(void)

{

3-117

3 Defects

3-118

int* pi = (int*)malloc(sizeof (int));
if (pi == NULL) return;

*pi = 2;

free(pi);

/* Fix: remove second deallocation */

Check Information

Group: Dynamic memory

Language: C | C++

Default: On

Command-Line Syntax: DOUBLE DEALLOCATION
Impact: High

CWE ID: 415

CERT C ID: MEMO00-C, MEM30-C

ISO/TEC TS 17961 ID: accfree, dblfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of previously freed pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

http://cwe.mitre.org/data/definitions/415.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/vAE

Declaration mismatch

Declaration mismatch

Mismatch between function or variable declarations

Description

Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Examples

Inconsistent Declarations in Two Files

filel.c
int foo(void) {

return 1;

}

file2.c

double foo(void) ;

int bar (void) {
return (int)foo();

}

In this example, filel.c declares foo () as returning an integer. In file2.c, foo () is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match filel.c, the defect is fixed.

filel.c

3-119

3 Defects

int foo(void) {
return 1;

}

file2.c

int foo(void);

int bar (void) {
return fool();

Inconsistent Structure Alignment

testl.c test2.c
#include "square.h" #include "circle.h"
#include "circle.h" #include "square.h"
struct aCircle circle; struct aCircle circle;
struct aSquare square; struct aSquare square;
int main () { int main () {
square.side=1; square.side=1;
circle.radius=1; circle.radius=1;
return 0; return 0;
} }
circle.h square.h
#pragma pack(1l) extern struct aSquare {
unsigned int side:1;
extern struct aCircle{ } square;
int radius;
} circle;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square.h does not have the same alignment as square in test2.c.
This error occurs because the #pragma pack (1) statement in circle.h declares specific
alignment. In test2.c, circle.h is included before square.h. Therefore, the #pragma

pack (1) statement from circle.h is not reset to the default alignment after the aCircle
structure. Because of this omission, test2.c infers that the aSquare square structure
also has an alignment of 1 byte.

3-120

Declaration mismatch

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack () statement at the end of circle.h.

testl.c test2.c

#include "square.h" #include "circle.h"

#include "circle.h" #include "square.h"

struct aCircle circle; struct aCircle circle;

struct aSquare square; struct aSquare square;

int main () { int main () {
square.side=1; square.side=1;
circle.radius=1; circle.radius=1;
return 0; return 0;

} }

circle.h square.h

#pragma pack(1l) extern struct aSquare {

unsigned int side:1;

extern struct aCircle({ } square;
int radius;

} circle;

#pragma pack()

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.

3 Rerun your analysis.

The Declaration mismatch defect is resolved.

3-121

3 Defects

Check Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: DECL_MISMATCH

Impact: High

CWE ID: 685, 686

CERT C ID: ARR31-C, DCL40-C, EXP37-C, MSC15-C
ISO/IEC TS 17961 ID: argcomp, funcdecl

See Also
Polyspace Analysis Options

Find defects (-checkers) | Ignore pragma pack directives (-ignore-
pragma-pack)

Topics
“Navigate to Root Cause of Defect”

“Review and Fix Results”

Introduced in R2013b

3-122

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/EoLu

Delete of void pointer

Delete of void pointer

delete operates on a void* pointer pointing to an object

Description

Delete of void pointer occurs when the delete operator operates on a void* pointer.

Risk
Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer
pointing to the object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a
counter value, the operations do not take place.

Fix
Cast the void* pointer to the appropriate type. Perform the delete operation on the
result of the cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to
MyClass*.

Examples

Delete of void* Pointer
#include <iostream>
class MyClass {

public:
explicit MyClass(int 1i):m 1i(i) {}

3-123

3 Defects

3-124

~MyClass () {
std::cout << "Delete MyClass (" << m_ i << ")" << std::endl;
}
private:
int m i;

b

void my delete(void* ptr) {
delete ptr;
}

int main() {
MyClass* pt = new MyClass (0);
my delete (pt);
return 0;

}

In this example, the function my delete is designed to perform the delete operation on
any type. However, in the function body, the delete operation acts on a void* pointer,
ptr. Therefore, when you call my delete with an argument of type MyClass, the
MyClass destructor is not called.

One possible solution is to use a function template instead of a function for my delete.

#include <iostream>

class MyClass {
public:
explicit MyClass(int 1i):m 1i(i) {}
~MyClass () {
std::cout << "Delete MyClass (" << m i << ")" << std::endl;
}
private:
int m i;

b

template<typename T> void safe delete(T*& ptr) {
delete ptr;
ptr = NULL;

Delete of void pointer

int main () {
MyClass* pt = new MyClass (0);
safe delete(pt);
return 0;

Result Information

Group: Good practice

Language: C++

Default: Off

Command-Line Syntax: DELETE OF VOID PTR
Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-125

3 Defects

3-126

Destination buffer overflow in string manipulation

Function writes to buffer at offset greater than buffer size

Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf (char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of
characters written. For instance:

* If you use sprintf to write formatted data to a string, use snprintf, snprintf or
sprintf s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

+ Ifyou use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf s instead to enforce length control.

+ If you use wcscpy to copy a wide string, use wesnepy, weslcpy, or wescpy s instead
to enforce length control.

Another possible solution is to increase the buffer size.

Destination buffer overflow in string manipulation

Examples

Buffer Overflow in sprintf Use
#include <stdio.h>

void func (void) {
char buffer[20];
char *fmt string = "This is a very long string, it does not fit in the buffer";

sprintf (buffer, fmt string);
}

In this example, buffer can contain 20 char elements but fmt string has a greater
size.

One possible correction is to use the snprintf function to enforce length control.
#include <stdio.h>

void func (void) {
char buffer[20];
char *fmt string = "This is a very long string, it does not fit in the buffer";

snprintf (buffer, 20, fmt string);

Result Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: STRLIB_ BUFFER _OVERFLOW

Impact: High

CWE 1ID: 121, 125, 251, 787

CERT C ID: ARR33-C, ARR38-C, ENV01-C, STR07-C, STR08-C, STR31-C, STR38-C
ISO/IEC TS 17961 ID: 1ibptr, taintformatio

3-127

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/251.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/OIAc
https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/CIEAAQ
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/FADAAQ

3 Defects

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer underflow in string manipulation

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-128

Destination buffer underflow in string manipulation

Destination buffer underflow in string manipulation

Function writes to buffer at a negative offset from beginning of buffer

Description

Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf (char* buffer, const char* format), you
obtain the buf fer from an operation buffer = (char*)arr; ... buffer +=
offset;.arr is an array and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix
If the destination buffer argument results from pointer arithmetic, see if you are

decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Examples

Buffer Underflow in sprintf Use

#include <stdio.h>
#define offset -2

void func (void) {

char buffer[20];
char *fmt string ="Text";

3-129

3 Defects

sprintf (¢buffer[offset], fmt string);
}

In this example, sbuffer[offset] is at a negative offset from the memory allocated to
buffer.

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func (void) {
char buffer[20];
char *fmt string ="Text";

sprintf (¢buffer[offset], fmt string);

Result Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: STRLIB_BUFFER UNDERFLOW
Impact: High

CWE 1ID: 124, 786, 787

CERT C ID: ARR38-C, STR35-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer overflow in string manipulation

Topics
“Navigate to Root Cause of Defect”

3-130

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB

Destination buffer underflow in string manipulation

“Review and Fix Results”

Introduced in R2015b

3-131

3 Defects

3-132

Destruction of locked mutex

Task tries to destroy a mutex in the locked state

Description

Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

+ Initialize a mutex before creating the threads where you use the mutex.

+ Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

Examples

Locking and Destruction in Different Tasks

#include <pthread.h>

Destruction of locked mutex

pthread mutex t lockl;
pthread mutex t lock2;
pthread mutex t lock3;

void t0 (void) {
pthread mutex lock (&lockl);
pthread mutex lock (&lock2);
pthread mutex lock (&lock3);
pthread mutex unlock (&lock2);
pthread mutex unlock (&lockl);
pthread mutex unlock (&lock3);

}

void tl (void) {
pthread mutex lock (&lockl);
pthread mutex lock (&lock2);
pthread mutex destroy (&lock3);
pthread mutex unlock (&lock2);
pthread mutex unlock (&lockl);

In this example, after task t0 locks the mutex 1ock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

£0 acquires lock3.

t0 releases lock2.

t0 releases lockl.

t1 acquires the lock 1ock1 released by tO.

t1 acquires the lock 1ock?2 released by t0.

D g A WON =

t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Entry
points (-entry-points). The critical sections are implemented through primitives
pthread mutex lock and pthread mutex unlock that the software detects
automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread create. The next example shows how the defect can appear
when you use pthread create.

3-133

3 Defects

3-134

The locking and destruction of 1ock3 occurs inside the critical section imposed by lock1l
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

* Critical section imposed by 1ock1 alone.

* Critical section imposed by 1lockl and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lockl and lock2. When t0 acquires lockl and lock2, t1 has to
wait for their release before it executes the instruction pthread mutex destroy
(&lock3) ;. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread mutex t lockl;
pthread mutex t lock2;
pthread mutex t lock3;

void t0 (void) {
pthread mutex lock (&lockl);
pthread mutex lock (&lock2);

pthread mutex lock (&lock3);
pthread mutex unlock (&lock3);

pthread mutex unlock (&lock2);
pthread mutex unlock (&lockl);
}

void tl (void) {
pthread mutex lock (&lockl);
pthread mutex lock (&lock2);

pthread mutex destroy (&lock3);

pthread mutex unlock (&lock2);
pthread mutex unlock (&lockl);

Destruction of locked mutex

Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4

pthread t callThd[NUMTHREADS];

pthread mutex t lock;

void atomic operation(void);

void *do create(void *arg) {
/* Creation thread */
pthread mutex init(&lock, NULL);
pthread exit ((void*) 0);

void *do work(void *arg) {
/* Worker thread */
pthread mutex lock (&lock);
atomic operation();
pthread mutex unlock (&lock);
pthread exit ((void*) 0);

void *do _destroy(void *arg) {
/* Destruction thread */
pthread mutex destroy(&lock);
pthread exit ((void*) 0);

int main (int argc, char *argv[]) {
int 1i;
void *status;
pthread attr t attr;

/* Create threads */
pthread attr init (&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;

/* Thread that initializes mutex */
pthread create(&callThd[0], &attr, do create, NULL);

/* Threads that use mutex for atomic operation*/

3-135

3 Defects

for (i=0; i<NUMTHREADS-1; i++) {
pthread create(&callThd[i], &attr, do work, (void *)i);
}

/* Thread that destroys mutex */
pthread create (&callThd[NUMTHREADS -1], &attr, do destroy, NULL);

pthread attr destroy(&attr);

/* Join threads */

for (i=0; i<NUMTHREADS; i++) {
pthread join(callThd[i], &status);

}

pthread exit (NULL) ;
1

In this example, four threads are created. The threads are assigned different actions.

* The first thread callThd[0] initializes the mutex lock.

* The second and third threads, cal1lThd[1] and callThd[2], perform an atomic
operation protected by the mutex lock.

+ The fourth thread cal1Thd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2

pthread t callThd[NUMTHREADS] ;

pthread mutex t lock;

void atomic operation(void);

void *do work(void *arg) {
pthread mutex lock (&lock);

3-136

Destruction of locked mutex

atomic operation();
pthread mutex unlock (&lock);
pthread exit ((void*) 0);

int main (int argc, char *argv[]) {
int i;
void *status;
pthread attr t attr;

/* Create threads */
pthread attr init (&attr);

pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;

/* Initialize mutex */
pthread mutex init(&lock, NULL);

for (i=0; i<NUMTHREADS; i++) {

pthread create(&callThd[i], &attr, do work, (void *)i);

pthread attr destroy(&attr);

/* Join threads */

for (i=0; i<NUMTHREADS; i++) {
pthread join(callThd[i], &status);

}

/* Destroy mutex */
pthread mutex destroy(&lock);

pthread exit (NULL) ;

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex 1ock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine

of the threads.
#include <pthread.h>

/* Define globally accessible variables and a mutex */

3-137

3 Defects

#define NUMTHREADS 4

pthread t callThd[NUMTHREADS] ;
pthread mutex t lock;

pthread mutex t lock2;

void atomic operation(void);

void *do create(void *arg) {
/* Creation thread */
pthread mutex init(&lock, NULL);
pthread exit ((void*) 0);

void *do work(void *arg) {
/* Worker thread */
pthread mutex lock (&lock2);
pthread mutex lock (&lock);
atomic operation();
pthread mutex unlock (&lock);
pthread mutex unlock (&lock2);
pthread exit ((void*) 0);

void *do destroy(void *arg) {
/* Destruction thread */
pthread mutex lock (&lock2);
pthread mutex destroy(&lock);
pthread mutex unlock (&lock2);
pthread exit ((void*) 0);

int main (int argc, char *argv[]) {
int i;
void *status;
pthread attr t attr;

/* Create threads */
pthread attr init (&attr);
pthread attr setdetachstate(&attr, PTHREAD CREATE JOINABLE) ;

/* Initialize second mutex */
pthread mutex init(&lock2, NULL);

3-138

Destruction of locked mutex

/* Thread that initializes first mutex */
pthread create(&callThd[0], &attr, do create, NULL);

/* Threads that use first mutex for atomic operation */
/* The threads use second mutex to protect first from destruction in locked state*/
for (i=0; i<NUMTHREADS-1; i++) {
pthread create(&callThd[i], &attr, do work, (void *)i);
}

/* Thread that destroys first mutex */
/* The thread uses the second mutex to prevent destruction of locked mutex */
pthread create (&callThd[NUMTHREADS -1], &attr, do destroy, NULL);

pthread attr destroy(&attr);

/* Join threads */

for (i=0; i<NUMTHREADS; i++) {
pthread join(callThd[i], &status);

}

/* Destroy second mutex */
pthread mutex destroy(&lock2);

pthread exit (NULL) ;

Result Information

Group: Concurrency

Language: C | C++

Default: Off

Command-Line Syntax: DESTROY LOCKED
Impact: Medium

CWE ID: 667, 826

CERT C ID: CON31-C, POS48-C

3-139

https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/826.html
https://www.securecoding.cert.org/confluence/x/zIAg
https://www.securecoding.cert.org/confluence/x/aYBcBQ

3 Defects

See Also

Polyspace Analysis Options

Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Entry points (-entry-points)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Double lock | Double unlock
| Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

3-140

Deterministic random output from constant seed

Deterministic random output from constant seed

Seeding routine uses a constant seed making the output deterministic

Description

Deterministic random output from constant seed detects random standard
functions that when given a constant seed, have deterministic output.

Risk
When some random functions, such as srand, srandom, and initstate, have constant

seeds, the results produce the same output every time that your program is run. A
hacker can disrupt your program if they know how your program behaves.

Fix
Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-630,
and should not be used for security purposes.

Examples

Random Number Generator Initialization
#include <stdlib.h>

void random num(void)

{

srand (123450) ;
/* oL %/

3-141

3 Defects

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define CRT_RAND S
#include <stdlib.h>
#include <stdio.h>

unsigned int random num time (void)

{

unsigned int number;
errno_t err;
err = rand_s (&number) ;

if (err !'= 0)
{

return number;

}

else

{

return err;

}

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: RAND SEED CONSTANT
Impact: Medium

CWE ID: 330, 336

CERT C ID: MSC32-C

3-142

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/336.html
https://www.securecoding.cert.org/confluence/x/hABhAQ

Deterministic random output from constant seed

See Also

Predictable random output from predictable seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-143

3 Defects

3-144

Double lock

Lock function is called twice in a task without an intermediate call to unlock function

Description

Double lock occurs when:

+ A task calls a lock function my lock.

* The task calls my lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling 1ock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func (void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Lock

int global var;

void lock (void);
void unlock (void) ;

void taskl (void)
{
lock ()
global var += 1;
lock ()
global var += 1;

Double lock

unlock () ;

}

vold task2 (void)

{
lock () ;
global var += 1;
unlock () ;

}

In this example, to emulate multitasking behavior, you must specify the following

options:
Option Value
Configure multitasking
manually on page 1-105
Entry points on page 1- taskl
112

task2

Critical section details on
page 1-124

Starting routine

Ending routine

lock

unlock

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points taskl, task2
-critical-section-begin lock:csl
-critical-section-end unlock:csl

taskl enters a critical section through the call 1ock () ;. taskl calls 1ock again before

it leaves the critical section through the call unlock () ;.

If you want the first global var+=1; to be outside the critical section, one possible

correction is to remove the first call to 1ock. However, if other tasks are using
global var, this code can produce a Data race error.

int global var;

void lock (void) ;

3-145

3 Defects

void unlock (void) ;

void taskl (void)

{
global var += 1;
lock();
global var += 1;
unlock () ;

volid task2 (void)

{
lock () ;
global var += 1;
unlock () ;

If you want the first global var+=1; to be inside the critical section, one possible
correction is to remove the second call to 1ock.

int global var;

void lock (void);
void unlock (void) ;

void taskl (void)

{
lock () ;
global var += 1;
global var += 1;
unlock () ;

void task2 (void)

{
lock () ;
global var += 1;
unlock () ;

3-146

Double lock

If you want the second global var+=1; to be inside a critical section, another possible

correction is to add another call to unlock.

int global var;

void lock (void) ;
void unlock (void) ;

void taskl (void)

{
lock () ;
global var += 1;
unlock () ;
lock () ;
global var += 1;
unlock () ;

}

void task2 (void)

{
lock () ;
global var += 1;
unlock () ;

Double Lock with Function Call

int global var;

void lock (void);
void unlock (void) ;

void performOperation (void) {
lock () ;
global var++;

}

3-147

3 Defects

3-148

void taskl (void)
{

lock () ;

global var += 1;
performOperation () ;
unlock () ;

}

volid task2 (void)

{
lock () ;
global var += 1;
unlock () ;

}

In this example, to emulate multitasking behavior, you must specify the following

options:

Option Specification

Configure multitasking
manually on page 1-105

Entry points on page 1- taskl

112
task?2

Critical section details on |[Starting routine

Ending routine

page 1-124 lock

unlock

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points taskl, task?2
-critical-section-begin lock:csl
-critical-section-end unlock:csl

taskl enters a critical section through the call 1ock () ;. taskl calls the function
performOperation. In performOperation, lock is called again even though taskl
has not left the critical section through the call unlock() ;.

In the result details for the defect, you see the sequence of instructions leading to the
defect. For instance, you see that following the first entry into the critical section, the

execution path:

+ Enters function performOperation.

Double lock

* Inside performOperation, attempts to enter the same critical section once again.

O pouble lock (Impact: High) 2/
Task is waiting for already acquired resource.

Event File Scope Line

1 Entering task 'task1’ myFile.c performCperation) 11

2 ‘'taskl’ enters critical section myFile.c task1() 13
Lock function: 'lock’

3 Entering function 'performOperation’ myFile.c task1() 15

4 ‘'taskl’ attempts to enter same critical section. myFile.c performCperation) 7

5 Double lodk myFile.c File Scope 7

You can click each event to navigate to the corresponding line in the source code.

One possible correction is to remove the call to 1ock in taskl.

int global var;

void lock (void);
void unlock (void) ;

void performOperation (void) {
global var++;
}

void taskl (void)

{
lock () ;
global var += 1;
performOperation() ;
unlock () ;

}

vold task2 (void)

{
lock () ;
global var += 1;
unlock () ;

3-149

3 Defects

3-150

Check Information

Group: Concurrency

Language: C | C++

Default: On
Command-Line Syntax: DOUBLE_LOCK
Impact: High

CWE ID: 764

CERT C ID: CONO01-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-

exclusions-file)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double unlock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

https://cwe.mitre.org/data/definitions/764.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Double unlock

Double unlock

Unlock function is called twice in a task without an intermediate call to lock function

Description

Double unlock occurs when:

* A task calls a lock function my lock.
* The task calls the corresponding unlock function my unlock.

* The task calls my unlock again. The task does not call my lock a second time
between the two calls tomy unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task taskl calls a lock function my lock, other tasks calling
my lock must wait until taskl calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func (void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Unlock

int global var;

void BEGIN CRITICAL SECTION (void);
void END CRITICAL SECTION (void);

void taskl (void)

{
BEGIN CRITICAL SECTION() ;

3-151

3 Defects

3-152

global var += 1;

END CRITICAL SECTION();

global var += 1;

END CRITICAL SECTION();
1

vold task2 (void)

{
BEGIN CRITICAL SECTION();
global var += 1;
END CRITICAL SECTION();

1

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Configure multitasking
manually on page 1-105

Entry points on page 1- taskl
112
task2
Critical section details on |[Starting routine Ending routine
page 1-124 BEGIN CRITICAL SECTION|END CRITICAL SECTION

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points taskl, task2
-critical-section-begin BEGIN CRITICAL SECTION:csl
-critical-section-end END CRITICAL SECTION:csl

taskl enters a critical section through the call BEGIN CRITICAL SECTION() ;. taskl
leaves the critical section through the call END CRITICAL SECTION () ;. taskl calls
END CRITICAL SECTION again without an intermediate call to

BEGIN CRITICAL SECTION.

If you want the second global var+=1; to be outside the critical section, one possible
correction is to remove the second call to END CRITICAL SECTION. However, if other
tasks are using global var, this code can produce a Data race error.

Double unlock

int global var;

void BEGIN CRITICAL SECTION (void);
void END CRITICAL SECTION (void);

void taskl (void)

{
BEGIN CRITICAL SECTION();
global var += 1;
END CRITICAL SECTION();
global var += 1;

volid task2 (void)

{
BEGIN CRITICAL SECTION();
global var += 1;
END CRITICAL SECTION();

If you want the second global var+=1; to be inside the critical section, one possible

correction is to remove the first call to END CRITICAL SECTION.

int global var;

void BEGIN CRITICAL SECTION (void);
void END CRITICAL SECTION (void);

void taskl (void)
{
BEGIN CRITICAL SECTION();
global var += 1;
global var += 1;
END CRITICAL SECTION();

void task2 (void)

{
BEGIN CRITICAL SECTION();
global var += 1;

3-153

3 Defects

END CRITICAL SECTION();

If you want the second global var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN CRITICAL SECTION.

int global var;

void BEGIN CRITICAL SECTION (void);
void END CRITICAL SECTION (void);

void taskl (void)

{
BEGIN_CRITICAL_SECTION();
global var += 1;
END_CRITICAL_SECTION();
BEGIN_CRITICAL_SECTION();
global var += 1;
END_CRITICAL_SECTION();

}

void task2 (void)

{
BEGIN_CRITICAL_SECTION();
global var += 1;
END_CRITICAL_SECTION();

Check Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: DOUBLE UNLOCK
Impact: High

CWE ID: 765

CERT C ID: CONO01-C

3-154

https://cwe.mitre.org/data/definitions/765.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Double unlock

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-

exclusions-file)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3-155

3 Defects

Errno not checked

errno 1s not checked for error conditions following function call

Description

Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

* fgetwc, strtol, and wecstol.

For a comprehensive list of functions, see documentation about errno.

+ POSIX errno-setting functions such as encrypt and setkey.

Risk
To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

+ void

+ Even if an error occurs, the return value can be the same as the value from a

successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

3-156

https://www.securecoding.cert.org/confluence/x/KwBl

Errno not checked

Fix
Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Examples

errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv([]) {
char *str, *endptr;
int base;
str = argv([l];
base = 10;

long val = strtol(str, &endptr, base);
printf ("Return value of strtol() = %1d\n", val);
}

You are using the return value of strtol without checking errno.

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

3-157

3 Defects

3-158

int main(int argc, char *argv[]) {
char *str, *endptr;
int base;
str = argv[l];
base = 10;
errno = 0;
long val = strtol(str, &endptr, base);

if((val == LONG MIN || val == LONG MAX) && errno == ERANGE) ({
printf ("strtol error");
exit (EXIT FAILURE) ;

}

printf ("Return value of strtol() = %1d\n", val);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: ERRNO NOT CHECKED
Impact: Medium

CWE ID: 391

CERT C ID: ERR33-C

ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results

Errno not reset | Misuse of errno | Returned value of a sensitive
function not checked

Introduced in R2017a

https://cwe.mitre.org/data/definitions/391.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag

Errno not reset

Errno not reset

errno not reset before calling a function that sets errno

Description

Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Examples

errno Not Reset Before Call to strtod
#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <float.h>

#define fatal error() abort()

double func(const char *sl, const char *s2)

3-159

3 Defects

3-160

double f1;

fl =

if |

double f2

}

0

if

(0

strtod

== errno)

(sl, NULL);
== errno) {
= strtod (s2, NULL);

{

long double result = (long double)fl + £2;

if

((result <= (long double)DBL MAX)

{

return

fatal error();

return 0.0;

}

(double) result;

&&

(result >=

(long double) -DBL_ MAX))

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

One possible correction is to reset errno to 0 before calling strtod.

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<errno.h>
<float.h>

#define fatal error()

abort ()

double func(const char *sl, const char *s2)

{

double f1;
errno = 0;
fl = strtod
if (0 == errno) {
double f2
if (0 == errno)

(sl, NULL);

= strtod (s2, NULL);

{

long double result = (long double)fl + £2;
((result <= (long double)DBL MAX)

if

{

return

(double) result;

&&

(result >=

(long double)-DBL MAX))

Errno not reset

fatal error();
return 0.0;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: MISSING ERRNO RESET
Impact: High

CWE ID: 456, 703

CERT C ID: ERR30-C

ISO/IEC TS 17961 ID: inverrno

See Also

Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive
function not checked

Introduced in R2017a

3-161

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl

3 Defects

3-162

Exception caught by value

catch statement accepts an object by value

Description

Exception caught by value occurs when a catch statement accepts an object by value.

Risk

If a throw statement passes an object and the corresponding catch statement accepts
the exception by value, the object is copied to the catch statement parameter. This copy
can lead to unexpected behavior such as:

* Object slicing, if the throw statement passes a derived class object.

* Undefined behavior of the exception, if the copy fails.
Fix

Catch the exception by reference or by pointer. Catching an exception by reference is
recommended.

Examples

Standard Exception Caught by Value
#include <exception>

extern void print str(const char* p);
extern void throw exception();

void func() {
try {
throw exception();

}

Exception caught by value

catch (std::exception exc) {
print str(exc.what());
}
}

In this example, the catch statement takes a std: :exception object by value.
Catching an exception by value causes copying of the object. It can cause undefined
behavior of the exception if the copy fails.

One possible solution is to catch the exception by reference.

#include <exception>

extern void print str(const char* p);
extern void throw exception();

void corrected excpcaughtbyvalue() {
try |
throw exception();
}
catch (std: :exception& exc) {
print str(exc.what());

}

Derived Class Exception Caught by Value

#include <exception>
#include <string>

#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {

public:

explicit BaseExc();

virtual ~BaseExc() {};
protected:

BaseExc (const std::string& type);
private:

std::string id;
i

3-163

3 Defects

class IOExc: public BaseExc {
public:

explicit IOExc():;
b

//Class method declarations

BaseExc::BaseExc () : id(typeid(this) .name()) {

}

BaseExc: :BaseExc (const std::string& type): id(type) {
}

IOExc::IOExc () : BaseExc (typeid(this) .name()) {

}
int input (void);

int main(void) {
int rnd = input();
try {
if (rnd==0) {
throw IOExc () ;
} else {
throw BaseExc () ;

catch (BaseExc exc) {

std::cout << "Intercept BaseExc" << std::endl;
}
return 0;

}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

* Undefined behavior of the exception if it fails.

* Object slicing if an exception of the derived class IOExc is caught.

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>

3-164

Exception caught by value

#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {

public:

explicit BaseExc();

virtual ~BaseExc() {};
protected:

BaseExc (const std::string& type);
private:

std::string id;
i

class IOExc: public BaseExc {
public:

explicit IOExc():;
b

//Class method declarations
BaseExc::BaseExc () : id(typeid(this) .name()) {

}

BaseExc: :BaseExc (const std::string& type): id(type)
}

IOExc::IOExc () : BaseExc (typeid(this) .name()) {

}

int input (void);

int main(void) {
int rnd = input();
try {
if (rnd==0) {
throw IOExc () ;
} else {
throw BaseExc () ;

catch (BaseExc& exc) {

std::cout << "Intercept BaseExc" << std::endl;

3-165

3 Defects

return 0;

Result Information

Group: Programming

Language: C++

Default: On

Command-Line Syntax: EXCP CAUGHT BY VALUE
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-166

Exception handler hidden by previous handler

Exception handler hidden by previous handler

catch statement is not reached because of an earlier catch statement for the same
exception

Description

Exception handler hidden by previous handler occurs when a catch statement is
not reached because a previous catch statement handles the exception.

For instance, a catch statement accepts an object of a class my exception and a later
catch statement accepts one of the following:

* An object of the my exception class.

* An object of a class derived from the my exception class.

Risk

Because the catch statement is not reached, it is effectively dead code.
Fix

One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch
statement that accepts the derived class exception before the catch statement that
accepts the base class exception.

Examples

catch Statement Hidden by Previous Statement

#include <new>

3-167

3 Defects

3-168

extern void print str(const char* p);
extern void throw exception();

void func () {
try {
throw exception();
}
catch (std::exception& exc) {
print str(exc.what());

}

catch(std::bad allocé& exc) |
print str(exc.what());
}
}

In this example, the second catch statement accepts a std: :bad_alloc object. Because
the std::bad alloc classis derived from a std: :exception class, the second catch
statement is hidden by the previous catch statement that accepts a std: :exception
object.

The defect appears on the parameter type of the catch statement. To find which catch
statement hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For
"catch"in Current Source File.

2 On the Search pane, click each search result, proceeding backwards from the
current catch statement. Continue until you find the catch statement that hides
the catch statement with the defect.

One possible correction is to place the catch statement with the derived class parameter
first.

#include <new>

extern void print str(const char* p);
extern void throw exception();

void corrected excphandlerhidden() {
try {
throw exception();

}

Exception handler hidden by previous handler

catch(std::bad allocé& exc) |
print str(exc.what());

}
catch (std::exception& exc) {
print str(exc.what());

}

Result Information

Group: Programming

Language: C++

Default: On

Command-Line Syntax: EXCP HANDLER HIDDEN

Impact: Medium
CWE ID: 755

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-169

http://cwe.mitre.org/data/definitions/755.html

3 Defects

3-170

Execution of a binary from a relative path can be
controlled by an external actor

Command with relative path is vulnerable to malicious attack

Description

Execution of a binary from a relative path can be controlled by an external
actor detects calls to an external command. If the call uses a relative path or no path to
call the external command, Bug Finder flags the call as a defect.

This defect also finds results that the Execution of externally controlled command
defect checker finds.

Risk

By using a relative path or no path to call an external command, your program uses an
unsafe search process to find the command. An attacker can control the search process
and replace the intended command with a command of their own.

Fix

When you call an external command, specify the full path.

Examples

Call Command with Relative Path

define GNU_ SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>

e .

Execution of a binary from a relative path can be controlled by an external actor

include <string.h>
define MAX BUFFER 100

void rel path()

{
char * data;
char data buf[MAX BUFFER] = "";
data = data buf;

strcpy(data, "ls -1la");

FILE *pipe;
pipe = popen (data, "wb");
if (pipe != NULL) pclose(pipe):;

}

In this example, Bug Finder flags popen because it tries to call 1s -1a using a relative
path. An attacker can manipulate the command to use a malicious version.

One possible correction is to use the full path when calling the command.

define GNU SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX BUFFER 100

.

void rel path()

{
char * data;
char data buf[MAX BUFFER] = "";
data = data buf;

strcpy(data, "/usr/bin/ls -la");

FILE *pipe;
pipe = popen (data, "wb");
if (pipe != NULL) pclose(pipe);

3-171

3 Defects

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: RELATIVE PATH CMD

Impact: Medium
CWE ID: 114, 427

See Also

Load of library from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Execution of externally
controlled command | Command executed from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-172

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/427.html

Execution of externally controlled command

Execution of externally controlled command

Command argument from an unsecure source vulnerable to operating system command
injection

Description

Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk

Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be
read or modified, execute unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist
of acceptable inputs and compare the input against this list.

Examples

Call Argument Command

#define XOPEN SOURCE
#define GNU SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {

3-173

3 Defects

3-174

SIZE1O0 10,
SIZE100 100,
SIZE128 = 128

b

vold taintedexternalcmd (char* usercmd)

{
char cmd[SIZE128] = "/usr/bin/cat ";
strcat (cmd, usercmd) ;
system(cmd) ;

}

This example function calls a command from a user argument without checking the
command variable.

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.

#define XOPEN_SOURCE
#define GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
SIZE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b
enum { CMDO

1, CMD1l, CMD2 };

vold taintedexternalcmd (int usercmd)
{
char cmd[SIZE128] = "/usr/bin/cat ";

switch (usercmd) {
case CMDO:
strcat (cmd, "*.c");
break;
case CMD1:

Execution of externally controlled command

strcat (cmd, "*.h");
break;

case CMD2:
strcat(cmd, "*.cpp"):
break;

default:
strcat (cmd, "*.c");

}

system(cmd) ;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED EXTERNAL CMD
Impact: Medium

CWE ID: 77, 78, 88, 114

CERT C ID: API00-C, ENV33-C, STR02-C
ISO/IEC TS 17961 ID: syscall

See Also

Use of externally controlled environment variable | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path |
Execution of a binary from a relative path can be controlled by an
external actor

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-175

http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY

3 Defects

3-176

File access between time of check and use
(TOCTOU)

File or folder might change state due to access race

Description

File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Examples

Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print tofile(FILE* f);

void toctou(char * log path) {
if (access(log path, W OK)==0) {
FILE* f = fopen(log path, "w");
if (£f) |

File access between time of check and use (TOCTOU)

print tofile(f);
fclose (f);

}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print tofile(FILE* f);

void toctou(char * log path) {
int fd = open(log path, O WRONLY);
if (£d!=-1) {
FILE *f = fdopen (fd, "w");

if (£f) |
print tofile(f);
fclose (f);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: TOCTOU
Impact: Medium

CWE ID: 367

CERT C ID: FIO01-C, FI045-C, POS35-C

3-177

http://cwe.mitre.org/data/definitions/367.html
https://www.securecoding.cert.org/confluence/x/MwU
https://www.securecoding.cert.org/confluence/x/yQCQBw
https://www.securecoding.cert.org/confluence/x/ZgAI

3 Defects

See Also

Data race | Bad file access mode or status

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-178

File descriptor exposure to child process

File descriptor exposure to child process

Copied file descriptor used in multiple processes

Description

File descriptor exposure to child process occurs when a process is forked and the
child process uses file descriptors inherited from the parent process.

Risk

When you fork a child process, file descriptors are copied from the parent process, which
means that you can have concurrent operations on the same file. Use of the same file
descriptor in the parent and child processes can lead to race conditions that may not be
caught during standard debugging. If you do not properly manage the file descriptor
permissions and privileges, the file content is vulnerable to attacks targeting the child
process.

Fix

Check that the file has not been modified before forking the process. Close all inherited
file descriptors and reopen them with stricter permissions and privileges, such as read-
only permission.

Examples

File Descriptor Accessed from Forked Process

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

e .

3-179

3 Defects

const char *test file="/home/user/test.txt";

void func (void)
{
char c;
pid t pid;
/* create file descriptor in read and write mode */
int fd = open(test file, O RDWR);
if (fd == -1)
{
/* Handle error */
abort () ;
}
/* fork process */
pid = fork();
if (pid == -1)
{
/* Handle error */
abort () ;
}
else if (pid == 0)
{ /* Child process accesses file descriptor inherited
from parent process */
(void) read (fd, &c, 1);
}
else
{ /* Parent process access same file descriptor as
child process */
(void) read (fd, &c, 1);

In this example, a file descriptor £d is created in read and write mode. The process is
then forked. The child process inherits and accesses £d with the same permissions as the
parent process. A race condition exists between the parent and child processes. The
contents of the file is vulnerable to attacks through the child process.

After you create the file descriptor, check the file for tampering. Then, close the inherited
file descriptor in the child process and reopen it in read-only mode.

3-180

File descriptor exposure to child process

e

include
include
include
include
include
include

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<fcntl.h>
<sys/types.h>

include <sys/stat.h>

void func (void)

{

char c;
pid t pid;

/* Get the state of file for further file tampering checking */

/* create file descriptor in read and write mode */
int fd = open(test file, O RDWR);
if (fd == -1)
{
/* Handle error */
abort () ;
}

/* Be sure the file was not tampered with while opening */
/* fork process */

pid = fork();
if (pid == -1)
{
/* Handle error */
(void) close (fd) ;
abort () ;
}
else if (pid == 0)
{ /* Close file descriptor in child process and repoen
it in read only mode */

(void) close (fd) ;
fd = open(test file, O RDONLY) ;
if (fd == -1)
{
/* Handle error */
abort () ;

3-181

3 Defects

(void) read (fd, &c, 1);
(void)close (fd) ;
}
else
{ /* Parent acceses original file descriptor */
(void) read (fd, &c, 1);
(void) close (fd) ;

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: FILE EXPOSURE TO CHILD

Impact: Medium
CWE ID: 362,
CERT C ID: POS38-C

See Also

Introduced in R2017b

3-182

https://cwe.mitre.org/data/definitions/362.html
https://www.securecoding.cert.org/confluence/x/ZQG7AQ

File manipulation after chroot () without chdir ("/")

File manipulation after chroot () without
chdir("/")

Path-related vulnerabilities for file manipulated after call to chroot

Description

File manipulation after chroot () without chdir ("/") detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir ("/").

Risk
If you do not call chdir ("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can still

manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix

After calling chroot, call chdir ("/") to make your chroot jail more secure.
Examples

Open File in chroot-jail

#include <unistd.h>
#include <stdio.h>

const char root path[] = "/var/ftproot";
const char log path[] = "file.log";
FILE* chrootmisuse () {

FILE* res;

3-183

3 Defects

chroot (root path);

chdir ("base");

res = fopen(log path, "r");
return res;

}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir ("\") afterward. This example calls chdir ("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Before opening files, call chdir ("/").

#include <unistd.h>
#include <stdio.h>

const char root path[] = "/var/ftproot";
const char log path[] = "file.log";
FILE* chrootmisuse () {

FILE* res;

chroot (root path);

chdir("/");

res = fopen(log path, "r");

return res;

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CHROOT MISUSE

Impact: Medium
CWE ID: 243
CERT C ID: POS05-C

See Also

Umask used with chmod-style arguments | Vulnerable path manipulation

3-184

http://cwe.mitre.org/data/definitions/243.html
https://www.securecoding.cert.org/confluence/x/bAL7

File manipulation after chroot () without chdir ("/")

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-185

3 Defects

3-186

Float conversion overflow

Overflow when converting between floating point data types

Description

Float conversion overflow occurs when converting a floating point number to a
smaller floating point data type. If the variable does not have enough memory to
represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Converting from double to float

float convert (void) {

double diam = 1e100;
return (float)diam;

}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 12100 requires more than 32 bits to be
precisely represented.

Check Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: FLOAT CONV_OVFL
Impact: High

CWE 1ID: 197, 681

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/681.html

Float conversion overflow

CERT C ID: FLP03-C, FLP34-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer conversion overflow | Unsigned integer conversion overflow |
Sign change integer conversion overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-187

https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/kgAV

3 Defects

3-188

Float division by zero

Dividing floating point number by zero

Description

Float division by zero occurs when the denominator of a division operation is a zero
and a floating point number.

Examples

Dividing a Floating Point Number by Zero

float fraction(float num)

{
float denom = 0.0;
float result = 0.0;

result = num/denom;

return result;

}

A division by zero error occurs at num/denom because denom is zero.

float fraction(float num)

{
float denom = 0.0;
float result = 0.0;

if(((int)denom) != 0)
result = num/denom;

return result;

Float division by zero

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

float fraction (float num)

{
float denom = 2.0;
float result = 0.0;

result = num/denom;

return result;

Check Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: FLOAT ZERO DIV
Impact: High

CWE ID: 369

CERT C ID: FLP03-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer division by zero

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

3-189

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/4YHp

3 Defects

Introduced in R2013b

3-190

Float overflow

Float overflow

Overflow from operation between floating points

Description

Float overflow occurs when an operation on floating point variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Multiplication of Floats
#include <float.h>
float square (void) {

float val = FLT MAX;
return val * val;

}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a f1loat, the overflow defect is fixed.

#include <float.h>

double square (void) {
float val = FLT MAX;

3-191

3 Defects

return (double)val * (double)val;

Check Information

Group: Numerical

Language: C | C++

Default: Off

Command-Line Syntax: FLOAT OVFL
Impact: Low

CWE ID: 682, 873

CERT C ID: FLP03-C, FLP06-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Unsigned integer overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-192

http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/YAAV

Format string specifiers and arguments mismatch

Format string specifiers and arguments mismatch

String specifiers do not match corresponding arguments

Description

Format string specifiers and arguments mismatch occurs when the parameters in
the format specification do not match their corresponding arguments. For example, an
argument of type unsigned long must have a format specification of $1u.

Examples

Printing a Float

#include <stdio.h>

void string format (void) {
unsigned long fst = 1;

printf ("$d\n", fst);
}

In the print f statement, the format specifier, 3d, does not match the data type of fst.

One possible correction is to use the $1u format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>
void string format (void) {
unsigned long fst = 1;

printf ("$lu\n", fst);

3-193

3 Defects

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>
void string format (void) {
unsigned long fst = 1;

printf ("$d\n", (int) fst);

Check Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: STRING FORMAT

Impact: Low

CWE ID: 685, 686

CERT C ID: DCL10-C, DCL11-C, EXP37-C, F1047-C, INT00-C, MSC15-C
ISO/IEC TS 17961 ID: argcomp, invfmtstr

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites

Standard library output functions

3-194

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/QwA1
https://www.securecoding.cert.org/confluence/x/IwA_/
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/wQA1
https://www.securecoding.cert.org/confluence/x/FhE
https://www.securecoding.cert.org/confluence/x/EoLu
http://en.cppreference.com/w/cpp/io/c/fprintf

Format string specifiers and arguments mismatch

Introduced in R2013b

3-195

3 Defects

Function called from signal handler not
asynchronous-safe

Call to interrupted function causes undefined program behavior

Description

Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global
data that might be in an inconsistent state.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
1s executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.

_exit() getpgrp () setsockopt ()
_Exit () getpid() setuid()
abort () getppid() shutdown ()
accept () getsockname () sigaction ()
access () getsockopt () sigaddset ()
aio_error () getuid() sigdelset ()
aio_return() kill () sigemptyset ()
aio_suspend () link () sigfillset ()

3-196

Function called from signal handler not asynchronous-safe

alarm() linkat () sigismember ()
bind () listen () signal ()
cfgetispeed () lseek () sigpause ()
cfgetospeed () lstat () sigpending ()
cfsetispeed() mkdir () sigprocmask ()
cfsetospeed () mkdirat () sigqueue ()
chdir () mkfifo () sigset ()

chmod () mkfifoat () sigsuspend ()
chown () mknod () sleep ()

clock gettime () mknodat () sockatmark ()
close () open () socket ()
connect () openat () socketpair ()
creat () pathconf () stat ()

dup () pause () symlink ()

dup?2 () pipe () symlinkat ()
execl () poll () sysconf ()
execle () posix trace event () tcdrain ()

execv () pselect () tcflow ()

execve () pthread kill () tcflush ()
faccessat () pthread self () tcgetattr ()
fchdir () pthread sigmask() tcgetpgrp ()
fchmod () quick exit () tcsendbreak ()
fchmodat () raise () tcsetattr ()
fchown () read () tcsetpgrp ()
fchownat () readlink () time ()

fentl () readlinkat () timer getoverrun ()
fdatasync () recv () timer gettime ()
fexecve () recvfrom () timer settime ()
fork () recvmsg () times ()

3-197

3 Defects

3-198

fpathconf () rename () umask ()
fstat () renameat () uname ()
fstatat () rmdir () unlink ()
fsync () select () unlinkat ()
ftruncate () sem post () utime ()
futimens () send () utimensat ()
getegid () sendmsg () utimes ()
geteuid () sendto () wait ()
getgid() setgid () waitpid()
getgroups () setpgid () write ()
getpeernamne () setsid ()

Functions not in the previous table are not asynchronous-safe, and should not be called

from a signal hander.

Examples

Call to printf£ () Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig atomic t e flag;

void display info(const char *info)

{
if (info)
{

(void) fputs (info,

}

stderr) ;

Function called from signal handler not asynchronous-safe

}

void sig handler (int signum)

{

}

/* Call function printf() that is not
asynchronous-safe */

printf ("signal %d received.", signum);
e flag = 1;

int main(void)

{

e flag = 0;
if (signal (SIGINT, sig handler) == SIG ERR)
{
/* Handle error */
}
char *info = (char *)calloc(SIZE20, sizeof (char)):;
if (info == NULL)
{
/* Handle Error */
}
while (l!e flag)
{
/* Main loop program code */
display info(info);
/* More program code */
}
free(info);
info = NULL;
return 0;

In this example, sig handler calls printf () when catching a signal. If the handler
catches another signal while printf () is executing, the behavior of the program is
undefined.

Use your signal handler to set only the value of a flag. e flag is of type volatile
sig atomic t.sig handler can safely access it asynchronously.

3-199

3 Defects

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20
extern volatile sig atomic t e flag;

void display info(const char *info)
{
if (info)
{
(void) fputs (info, stderr);

void sig handlerl (int signum)
{

int sO0 = signum;

e flag 1;

int func(void)

e flag = 0;
if (signal (SIGINT, sig handlerl) == SIG_ERR)
{
/* Handle error */
}
char *info = (char *)calloc(SIZE20, 1);
if (info == NULL)
{
/* Handle error */
}
while (l!e flag)
{
/* Main loop program code */
display info(info);
/* More program code */

3-200

Function called from signal handler not asynchronous-safe

free(info);
info = NULL;
return 0;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: SIG HANDLER ASYNC UNSAFE
Impact: Medium

CWE ID: 387, 479, 663, 828

CERT C ID: SIG30-C ERR32-C

ISO/IEC TS 17961 ID: asyncsig

See Also

Function called from signal handler not asynchronous-safe (strict) |
Return from computational exception signal handler | Shared data
access within signal handler | Signal call from within signal handler

Introduced in R2017b

3-201

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At
https://www.securecoding.cert.org/confluence/x/NABl

3 Defects

3-202

Function called from signal handler not
asynchronous-safe (strict)

Call to interrupted function causes undefined program behavior

Description

Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global
data that might be in an inconsistent state.

When you select the checker Function called from signal handler not
asynchronous-safe, the checker detects calls to functions that are not asynchronous-
safe according to the POSIX standard. Function called from signal handler not
asynchronous-safe (strict) does not raise a defect for these cases. Function called
from signal handler not asynchronous-safe (strict) raises a defect for functions that
are asynchronous-safe according to the POSIX standard but not according to the C
standard.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix
The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

« abort ()
+ Exit()

Function called from signal handler not asynchronous-safe (strict)

* quick exit()

* signal()

Examples

Call to raise () Inside Signal Handler

#include
#include
#include
#include
#include
#include
#include

void SIG
{

int

/* SIGTERM specific handling */

<signal.h>
<stdio.h>

<string.h>
<stdlib.h>
<setjmp.h>
<syslog.h>
<unistd.h>

ERR handler (int signum)

s0 = signum;

void sig handler (int signum)

{
int
/* C
if (

int finc

if |

{

if |

}
/* P

s0 = signum;

all raise() */

raise (SIGTERM) != 0) {
/* Handle error */

(void)

signal (SIGTERM, SIG ERR handler)

/* Handle error */
signal (SIGINT, sig handler)
/* Handle error */

rogram code */

== SIG ERR)

== SIG_ERR)

3-203

3 Defects

if (raise (SIGINT) != 0)
{
/* Handle error */

}
/* More code */
return 0;

In this example, sig handler calls raise () when catching a signal. If the handler
catches another signal while raise () is executing, the behavior of the program is
undefined.

According to the C standard, the only functions that you can safely call from a signal
handler are abort (), Exit(),quick exit (), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG ERR handler (int signum)
{
int sO0 = signum;
/* SIGTERM specific handling */
}
void sig handler (int signum)
{

int s0 = signum;

}

int func(void)

{
if (signal (SIGTERM, SIG ERR handler) == SIG_ERR)
{

/* Handle error */

}

3-204

Function called from signal handler not asynchronous-safe (strict)

if (signal (SIGINT, sig handler) == SIG ERR)
{

/* Handle error */

}

/* Program code */

if (raise (SIGINT) != 0)
{

/* Handle error */

}
/* More code */
return 0;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: SIG_HANDLER ASYNC UNSAFE STRICT
Impact: Medium

CWE ID: 387, 479, 663, 828

CERT C ID: SIG30-C, ERR32-C

ISO/IEC TS 17961 ID: asyncsig

See Also

Function called from signal handler not asynchronous-safe | Shared
data access within signal handler | Signal call from within signal
handler

Introduced in R2017b

3-205

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At
https://www.securecoding.cert.org/confluence/x/NABl

3 Defects

Function pointer assigned with absolute address

Constant expression is used as function address is vulnerable to code injection

Description

Function pointer assigned with absolute address looks for assignments to function
pointers. If the function pointer is assigned an absolute address, Bug Finder raises a
defect.

Bug Finder considers expressions with any combination of literal constants as an
absolute address. The one exception is when the value of the expression is zero.

Risk

Using a fixed address is not portable because it is possible the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute
arbitrary, possibly malicious, code.

Fix

Do not use an absolute address with function pointers.

Examples

Function Pointer Address Assignment

extern int funcO(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr () {

return (FuncPtr)0x08040000;
}

3-206

Function pointer assigned with absolute address

In this example, the function returns a function pointer to the address 0x08040000. If
an attacker knows this absolute address, an attacker can compromise your program.

One possible correction is to use the address of an existing function instead.

extern int funcO(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr () {
return &funcO;

}

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: FUNC PTR ABSOLUTE ADDR

Impact: Low
CWE ID: 587

See Also

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-207

http://cwe.mitre.org/data/definitions/587.html

3 Defects

Hard-coded buffer size

Size of memory buffer is a numerical value instead of symbolic constant

Description

Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk
Hard-coded buffer size causes the following issues:

* Hard-coded buffer size increases the likelihood of mistakes and therefore
maintenance costs. If a policy change requires developers to change the buffer size,
they must change every occurrence of the buffer size in the code.

+ Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

* Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

* enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

3-208

Hard-coded buffer size

Examples

Hard-Coded Buffer Size
int table[100];
void read (int);

void func (void) {
for (int i=0; 1<100; i++)
read (table[i]);
}

In this example, the size of the array table is hard-coded.

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX 1 = 100;
#define MAX 2 100
enum { MAX 3 = 100 };

int table 1[MAX 1];
int table 2[MAX 2];
int table 3[MAX 3];

void read (int):;

void func (void) {
for (int i=0; 1 < MAX 1; i++)
read (table 1[i]);
for (int i=0; 1 < MAX 2; i++)
read (table 2[i]);
for (int i=0; 1 < MAX 3; i++)
read (table 3[i]);

Result Information

Group: Good practice
Language: C | C++
Default: Off

3-209

3 Defects

Command-Line Syntax: HARD CODED BUFFER_SIZE

Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-210

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

Hard-coded loop boundary

Hard-coded loop boundary

Loop boundary is a numerical value instead of symbolic constant

Description

Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk
Hard-coded loop boundary causes the following issues:

* Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

+ Hard-coded loop boundary increases the likelihood of mistakes and maintenance
costs. If a policy change requires developers to change the loop boundary, they must
change every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic
names include const-qualified variables, enum constants or macros.enum constants are
recommended because:

* Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

* enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

3-211

3 Defects

const-qualified variables are usually known at run time.

Examples

Hard-Coded Loop Boundary
void performOperation (int);

void func (void) {
for (int i=0; 1<100; i++)
performOperation (i) ;

}

In this example, the boundary of the for loop is hard-coded.

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX 1 = 100;
#define MAX 2 100
enum { MAX 3 = 100 };

void performOperation 1 (int);
void performOperation 2 (int);
void performOperation 3 (int);

void func (void) {
for (int i=0; i<MAX 1; i++)
performOperation 1(i);
for (int i=0; i<MAX 2; i++)
performOperation 2(i);
for (int i=0; i<MAX 3; i++)
performOperation 3(i);

Result Information

Group: Good practice
Language: C | C++
Default: Off

3-212

Hard-coded loop boundary

Command-Line Syntax: HARD CODED_LOOP BOUNDARY

Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-213

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

3 Defects

3-214

Hard-coded object size used to manipulate memory

Memory manipulation with hard-coded size instead of sizeof

Description

Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk
If you hard code object size, your code is not portable to architectures with different type

sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix

For the size argument of memory functions, use sizeof (object).
Examples

Assume 4-Byte Integer Pointers

#include <stddef.h>
#include <stdlib.h>

enum {
SIZE3 = 3,
SIZE20 = 20

b

extern void fill ints(int **matrix, size t nb, size t s);
void bug hardcodedmemsize ()
{

size t i, s;

s = 4;

Hard-coded object size used to manipulate memory

int **matrix = (int **)calloc(SIZE20, s);
if (matrix == NULL) {
return; /* Indicate calloc() failure */

}
fill ints(matrix, SIZE20, s);
free (matrix);

}

In this example, the memory allocation function calloc is called with a memory size of
4. The memory is allocated for an integer pointer, which can be a more or less than 4

bytes depending on your target. If the integer pointer is not 4 bytes, your program can
fail.

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>
#include <stdlib.h>

enum {
SIZE3 = 3,
SIZE20 = 20

i

extern void fill ints(int **matrix, size t nb, size t s);

void corrected hardcodedmemsize ()
{

size t i, s;

s = sizeof (int *);
int **matrix = (int **)calloc(SIZE20, s);
if (matrix == NULL) {

return; /* Indicate calloc () failure */

t
fill ints(matrix, SIZE20, s);
free (matrix) ;

Result Information

Group: Good Practice
Language: C | C++
Default: Off

3-215

3 Defects

Command-Line Syntax: HARD CODED MEM SIZE

Impact: Low
CWE ID: 805
CERT C ID: EXP09-C

Introduced in R2016b

3-216

http://cwe.mitre.org/data/definitions/805.html
https://www.securecoding.cert.org/confluence/x/eAAV

Host change using externally controlled elements

Host change using externally controlled elements

Changing host ID from an unsecure source

Description

Host change using externally controlled elements detects uncontrolled arguments
in calls to routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows).

Risk
The tainted host ID value can allow external control of system settings. This control can

disrupt services, cause unexpected application behavior, or cause other malicious
intrusions.

Fix

Use caution when changing or editing the host ID. Do not allow user-provided values to
control sensitive data.

Examples

Change Host ID from Function Argument

#include <unistd.h>

void bug taintedhostid(long userhid) {
sethostid (userhid) ;

}

This example sets a new host ID using the argument passed to the function. Before using
the host ID, check the value passed in.

3-217

3 Defects

3-218

One possible correction is to change the host ID to a predefined ID. This example uses
the host argument as a switch variable to choose between the different, predefined host
IDs.

#include <unistd.h>

extern long called taintedhostid sanitize (long);
enum { HIO = 1, HI1, HI2, HI3 };

void taintedhostid(int host) {

long hid = 0;
switch (host) {
case HIO:
hid = 0x7f0100;
break;
case HI1:
hid = 0x7f0101;
break;
case HIZ2:
hid = 0x7f0102;
break;
case HI3:
hid = 0x7f0103;
break;
default:
/* do nothing */
break;
}
if (hid > 0) {
sethostid (hid) ;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED HOSTID
Impact: Medium

Host change using externally controlled elements

CWE ID: 15
CERT C ID: API00-C

See Also

Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Command executed from externally controlled path
| Library loaded from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-219

http://cwe.mitre.org/data/definitions/15.html
https://www.securecoding.cert.org/confluence/x/egAV

3 Defects

3-220

Improper array initialization

Incorrect array initialization when using initializers

Description

Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to
establish correspondence between an array element and an array initializer element. For
instance, the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to
int arr([(6] = { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one- |Unused array initializer Increase the array size or
dimensional array, you have [elements indicate a possible |remove excess elements.
more elements than the coding error.
array size.
You place the braces Because of the incorrect Place braces correctly.
enclosing initializer values |placement of braces, some
incorrectly. array initializer elements

are not used.

Unused array initializer

elements indicate a possible

coding error.

Improper array initialization

Issue

Risk

Possible Fix

In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization of
the first array element
indicates a possible coding
error. You possibly
overlooked the fact that
array indexing starts from
0.

Initialize all elements
explicitly.

In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers
in the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Examples

Incorrectly Placed Braces (C Only)

int arr([2][3]
= {{1, 2},
{3, 4},
{5, 6}
b

In this example, the array arr is initialized as {1, 2,0, 3, 4, 0}. Because the initializer
contains {5, 6}, you might expect the array to be initialized {1,2,3,4,5,6}.

One possible correction is to place the braces correctly so that all elements are explicitly

initialized.

3-221

3 Defects

int al[2][3]
= {{1, 2, 3},

{4, 5, 6}
b

First Element Not Explicitly Initialized

int arr[5]

= {

[11] 2,
(21 = 3,
[31 = 4,
(41 =5

b

In this example, arr [0] is not explicitly initialized. It is possible that the programmer
did not consider that the array indexing starts from O.

One possible correction is to initialize all elements explicitly.

int arr[5]

= {

01 1,
(11 = 2,
(21 = 3,
[31 = 4,
41 =5

b

Element Initialized Twice

int arr[5]

= {

01 =1,
(11 = 2,
(21 = 3,
(21 = 4,
[4] =5

3-222

Improper array initialization

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr [3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr [3] when arr [2] was initialized a second time.

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {

(01 =1,
(11 = 2,
(21 = 3,
[31 = 4,
[4] =5

b

Mix of Designated and Nondesignated Initializers

int arr|[]

= {
[0] =1,
[31 = 3,
4’
[5] =5,
6

b

In this example, because a mix of designated and nondesignated initializers are used, it
1s difficult to determine the size of arr by inspection.

One possible correction is to use only designated initializers for array initialization.

int arr[]

= {
[0] 1,
[31 = 3,
[4] = 4,
[5] =5,
[6] = 6

3-223

3 Defects

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: IMPROPER_ARRAY INIT
Impact: Medium

CWE ID: 665

CERT C ID: ARR00-C, ARR02-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-224

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/HQEOAQ

Incompatible types prevent overriding

Incompatible types prevent overriding

Derived class method hides a virtual base class method instead of overriding it

Description

Incompatible types prevent overriding occurs when a derived class method has the
same name and number of parameters as a virtual base class method but:
+ Differ in at least one parameter type.

+ Differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk
Risks include the following:
+ If you intend that the derived class method must override the base class method, the

overriding does not occur.

* Because the base class method is hidden, you cannot use a derived class object to call
the method. If you use a derived class object to call the method with the base class
parameters, the derived class method is called instead. For the parameters whose
types do not match the arguments that you pass, a cast takes place if possible.
Otherwise, a compilation failure occurs.

Fix
Possible solutions include the following:

+ If you want the derived class method to override the base class method, change the
interface of the derived class method.
For instance, change the parameter type or add a const qualifier if required.

* Otherwise, add the line using Base class name::method name to the derived
class declaration. In this way, you can access the base class method using an object of
the derived class.

3-225

3 Defects

3-226

Examples
typedef Causing Virtual Function Hiding in Derived Class

class Base {

public:
Base () ;
virtual ~Base();
virtual void func(float 1i);
virtual void funcp(float* 1i);
virtual void funcr (floaté& 1i);

}i
typedef double Float;

class Derived: public Base {
public:
Derived() ;
~Derived() ;
void func (Float 1);
void funcp (Float* i);
void funcr (Float& 1i);

b

In this example, because of the statement typedef double Float;, the Derived class
methods func, funcp and funcr have double arguments while the Base class methods
with the same name have float arguments.

Therefore, you cannot access the Base class methods using a Derived class object.

The defect appears on the method that hides a base class method. To find which base
class method is hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as
the derived class method name.

One possible correction is to use the same argument type for the base and derived class
methods to enable overriding. Otherwise, if you want to call the Base class methods with

Incompatible types prevent overriding

the float arguments using a Derived class object, add the line using
Base: :method name to the Derived class declaration.

class Base {

public:
Base () ;
virtual ~Base();
virtual void func (float 1i);
virtual void funcp(float* 1i);
virtual void funcr (floaté& 1i);

bi
typedef double Float;

class Derived: public Base {
public:

Derived () ;

~Derived() ;

using Base::func;

using Base::funcp;

using Base::funcr;

void func (Float 1);

void funcp (Float* i);

void funcr (Float& 1i);

i

const Qualifier Missing in Derived Class Method

namespace Missing Const {
class Base {

public:
virtual void func(int) const ;
virtual ~Base() ;

class Derived : public Base {
public:
virtual void func (int) ;

b
}

In this example, Derived: : func does not have a const qualifier but Base: : func does.
Therefore, Derived: : func does not override Base: : func.

3-227

3 Defects

To enable overriding, add the const qualifier to the derived class method declaration.

namespace Missing Const {
class Base {

public:
virtual void func(int) const ;
virtual ~Base () ;

}os
class Derived : public Base {

public:
virtual void func(int) const;

Value Instead of Reference in Derived Class Method

namespace Missing Ref ({

class Obj {
int data;

b

class Base {

public:
virtual void func (Obj& o);
virtual ~Base() ;

}og
class Derived : public Base {

public:
virtual void func(Obj o) ;

b
}

In this example, Derived: : func accepts an Ob7j parameter by value but Base: : func
accepts an ObJj parameter by reference. Therefore, Derived: : func does not override
Base::func.

To enable overriding, pass the derived class method parameter by reference.

3-228

Incompatible types prevent overriding

namespace Missing Ref {

class Obj {
int data;

b

class Base {

public:
virtual void func(Obj& o) ;
virtual ~Base() ;

b

class Derived : public Base {
public:
virtual void func(Obj& o) ;

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: VIRTUAL FUNC_HIDING
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-229

3 Defects

3-230

Inconsistent cipher operations

Encryption and decryption steps occur in succession with the same cipher context
without a reinitialization in between

Description

Inconsistent cipher operations occurs when you perform an encryption and
decryption step with the same cipher context. You do not reinitalize the context in
between those steps.

For instance, you set up a cipher context for decryption using EVP_DecryptInit ex.
EVP DecryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, 1iv);
However, you use the context for encryption using EVP_EncryptUpdate.

EVP EncryptUpdate (ctx, out buf, &out len, src, len);

Risk

Mixing up encryption and decryption steps can lead to obscure code. It is difficult to
determine at a glance whether the current cipher context is used for encryption or
decryption. The mixup can also lead to race conditions, failed encryption, and unexpected
ciphertext.

Fix

After you set up a cipher context for a certain family of operations, use the context for
only that family of operations.

For instance, if you set up a cipher context for decryption using EVP_DecryptInit ex,
use the context afterward for decryption only.

Inconsistent cipher operations

Examples

Encryption Step Following Decryption Step

#include <openssl/evp.h>
#include <stdlib.h>

/* Using the cryptographic routines */

unsigned char *out buf;

int out len;

unsigned char g key[l16];

unsigned char g iv[16];

void func(unsigned char* src, int len) {

EVP_CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

/* Cipher context set up for decryption*/
EVP DecryptInit ex(ctx, EVP aes 128 cbc(), NULL, g key, g iv);

/* Update step for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);
}

In this example, the cipher context ctx is set up for decryption using
EVP DecryptInit ex. However, immediately afterward, the context is used for
encryption using EVP_EncryptUpdate.

One possible correction is to change the setup step. If you want to use the cipher context
for encryption, set it up using EVP_EncryptInit ex.

#include <openssl/evp.h>
#include <stdlib.h>

unsigned char *out buf;
int out len;

3-231

3 Defects

unsigned char g key[l6];
unsigned char g iv[16];

void func(unsigned char* src, int len) {
EVP_CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

/* Cipher context set up for encryption*/
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, g key, g iv);

/* Update step for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER BAD FUNCTION

Impact: Medium
CWE ID: 372, 664

Introduced in R2017a

3-232

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Incorrect order of network connection operations

Incorrect order of network connection operations

Socket 1s not correctly established due to bad order of connection steps or missing steps

Description

Incorrect order of network connection operations occurs when you perform
operations on a network connection at the wrong point of the connection lifecycle.

Risk

Sending or receiving data to an incorrectly connected socket can cause unexpected
behavior or disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can
send sensitive data to an unexpected port. You can also get unexpected data from an
incorrect socket.

Fix

During socket connection and communication, check the return of each call and the
length of the data.

Before reading, writing, sending, or receiving information, create sockets in this order:

* For a connection-oriented server socket (SOCK STREAM or SOCK_SEQPACKET):

socket (...);
bind(...);

listen(...);
accept(...);

* For a connectionless server socket (SOCK DGRAM):

socket (...);
bind(...);

* For a client socket (connection-oriented or connectionless):

3-233

3 Defects

3-234

socket (...);
connect (...);

Examples

Connecting a Connection-Oriented Server Socket

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

H o o3 S

enum { BUF SIZE=1025 };
volatile int rd;

int stream socket server (int argc, char *argv[])

{
int listenfd = 0, connfd = 0;
struct sockaddr in serv_addr;

char sendBuff [BUF SIZE];
time t ticks;
struct tm * timeinfo;

listenfd = socket (AF _INET, SOCK STREAM, O0);
memset (&serv_addr, 48, sizeof (serv_addr));
memset (sendBuff, 48, sizeof (sendBuff));

serv_addr.sin family = AF INET;

serv_addr.sin addr.s addr = htonl (INADDR ANY) ;
serv_addr.sin port = htons(5000);

bind(listenfd, (struct sockaddr*)é&serv _addr, sizeof (serv_addr));
listen(listenfd, 10);

while (1)

{
connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

Incorrect order of network connection operations

ticks = time (NULL) ;
timeinfo = localtime (&ticks);
strftime (sendBuff,BUF SIZE,"%I:%M%p.",timeinfo);

write(listenfd, sendBuff, strlen(sendBuff));

close (connfd);
sleep(l);

This example creates a connection-oriented network connection. The function calls the
correct functions in the correct order: socket, bind, listen, accept. However, the
program should write to the connfd socket instead of the 1istenfd socket.

One possible correction is to write to the connfd function instead of the 1istenfd
socket.

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

P

enum { BUF SIZE=1025 };
volatile int rd;

int stream socket server good(int argc, char *argv([])

{
int listenfd = 0, connfd = 0;
struct sockaddr in serv_addr;

char sendBuff [BUF SIZE];
time t ticks;
struct tm * timeinfo;

listenfd = socket (AF _INET, SOCK STREAM, O0);
memset (&serv_addr, 48, sizeof (serv_addr));
memset (sendBuff, 48, sizeof (sendBuff));

serv_addr.sin family = AF INET;
serv_addr.sin addr.s_addr = htonl (INADDR ANY) ;

3-235

3 Defects

3-236

serv_addr.sin port = htons(5000);

bind(listenfd, (struct sockaddr*)é&serv _addr, sizeof (serv_addr));
listen(listenfd, 10);

while (1)

{
connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

ticks = time (NULL) ;

timeinfo = localtime (&ticks);

strftime (sendBuff,BUF SIZE,"%I:%M%p.",timeinfo);
write (connfd, sendBuff, strlen(sendBuff));

close (connfd) ;

sleep(l);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: BAD NETWORK CONNECT ORDER

Impact: Medium
CWE ID: 666

See Also

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

http://cwe.mitre.org/data/definitions/666.html

Incorrect pointer scaling

Incorrect pointer scaling

Implicit scaling in pointer arithmetic might be ignored

Description

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix

You use the sizeof The sizeof operator Do not use sizeof operator
operator in arithmetic returns the size of a data in pointer arithmetic.
operations on a pointer. type in number of bytes.

Pointer arithmetic is
already implicitly scaled by
the size of the data type of
the pointed variable.
Therefore, the use of
sizeof in pointer
arithmetic produces
unintended results.

You perform arithmetic Pointer arithmetic is Apply the cast before the
operations on a pointer, and |implicitly scaled. If you do |pointer arithmetic.
then apply a cast. not consider this implicit

scaling, casting the result of
a pointer arithmetic
produces unintended
results.

3-237

3 Defects

3-238

Examples

Use of sizeof Operator

void func (void) {
int arr[5] = {1,2,3,4,5};
int *ptr = arr;

int value in position 2 = *(ptr + 2*(sizeof(int)));

}

In this example, the operation 2* (sizeof (int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2* (sizeof (int)) * (sizeof (int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

One possible correction is to remove the sizeof operator.

void func (void) {
int arr[5] = {1,2,3,4,5};
int *ptr = arr;

int value in position 2 = *(ptr + 2);

Cast Following Pointer Arithmetic

int func(void) {
int x = 0;
char r = *(char *) (&x + 1);
return r;

}

In this example, the operation &x + 1 offsets &x by sizeof (int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Incorrect pointer scaling

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof (char) bytes
and still points within the allowed buffer, whose size is sizeof (int) bytes.

int func(void) {
int x = 0;
char r = *((char *) (&x)+ 1);
return r;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: BAD PTR_SCALING
Impact: Medium

CWE ID: 468

CERT C ID: ARR39-C, EXP08-C

ISO/IEC TS 17961 ID: 1ibptr

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”

Introduced in R2015b

3-239

http://cwe.mitre.org/data/definitions/468.html
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg

3 Defects

3-240

Integer conversion overflow

Overflow when converting between integer types

Description

Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original constant, the
conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char
char convert (void) {
int num = 1000000;

return (char)num;

}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert (void) {
int num = 1000000;

return (long)num;

Integer conversion overflow

Check Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: INT CONV_OVFL

Impact: High

CWE ID: 190, 191, 197

CERT C ID: FLP34-C, INT02-C, INT12-C, INT18-C, INT31-C

See Also

Float conversion overflow | Unsigned integer conversion overflow | Sign
change integer conversion overflow | Find defects (-checkers)

Topics

“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-241

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/197.html
https://www.securecoding.cert.org/confluence/x/kgAV
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/RAE
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE

3 Defects

Integer division by zero

Dividing integer number by zero

Description

Integer division by zero occurs when the denominator of a division or modulo
operation is zero.

Examples

Dividing an Integer by Zero

int fraction (int num)
{
int denom = 0;
int result = 0;

result = num/denom;

return result;
}

A division by zero error occurs at num/denom because denom is zero.

int fraction (int num)
{
int denom = 0

int result = 0;
if (denom != 0)
result = num/denom;

return result;

3-242

Integer division by zero

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your

Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

int fraction (int num)

{
int denom = 2;
int result = 0;

result = num/denom;

return result;

Modulo Operation with Zero

int mod arr(int input)
{

int arr[5];

for(int 1 = 0; 1 < 5; 1i++)

{
arr[i] = input % 1i;

}

return arr[0]+arr[l]+arr([2]+arr([3]+arr[4d];

}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop

starts at zero, which cannot be an iterator.

One possible correction is checking the divisor before the modulo operation. In this

example, see if the index i is zero before the modulo operation.

int mod arr(int input)
{

int arr[5];

for(int 1 = 0; 1 < 5; 1i++)

3-243

3 Defects

if(i !'= 0)
{
arr[i] = input % 1i;
}
else
{
arr[i] = input;

}

return arr[0]+arr[l]+arr([2]+arr([3]+arr(4d];

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod arr(int input)
{
int arr[5];
for(int i = 0; 1 < 5; i++4)
{
arr[i] = input % (i+1);

}

return arr[0Ol+arr[l]+arr([2]+arr[3]+arr(4];

Check Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: INT ZERO DIV
Impact: High

CWE ID: 369

CERT C ID: INT33-C

ISO/IEC TS 17961 ID: diverr

3-244

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/cAI

Integer division by zero

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float division by zero on page 3-188

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-245

3 Defects

3-246

Integer overflow

Overflow from operation between integers

Description

Integer overflow occurs when an operation on integer variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Addition of Maximum Integer
#include <limits.h>
int plusplus (void) {

int var = INT MAX;
var++;
return var;

}

In the third statement of this function, the variable var is increased by one. But the
value of var is the maximum integer value, so an int cannot represent one plus the
maximum integer value.

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a 1ong long instead of an int, the overflow
error is fixed.

#include <limits.h>

Integer overflow

long long plusplus (void) {

long long lvar = INT MAX;
lvar++;
return lvar;

Check Information

Group: Numerical

Language: C | C++

Default: Off

Command-Line Syntax: INT OVFL

Impact: Medium

CWE 1ID: 190, 191

CERT C ID: INTO00-C, INTO08-C, INT18-C, INT32-C, MSC15-C
ISO/IEC TS 17961 ID: intoflow

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unsigned integer overflow | Float overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-247

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
https://www.securecoding.cert.org/confluence/x/FhE
https://www.securecoding.cert.org/confluence/x/JA4
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/EoLu

3 Defects

3-248

Invalid assumptions about memory organization

Address is computed by adding or subtracting from address of a variable

Description

Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Examples

Reliance on Memory Organization

void func (void) {
int varl = 0x00000011, wvar2;
*(&varl + 1) = 0;

}

In this example, the programmer relies on the assumption that svarl + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

Invalid assumptions about memory organization

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: INVALID MEMORY ASSUMPTION
Impact: Medium

CWE ID: 188

CERT C ID: ARR37-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-249

http://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/UgHm

3 Defects

Invalid deletion of pointer

Pointer deallocation using delete without corresponding allocation using new

Description

Invalid deletion of pointer occurs when a block of memory released using the delete
operator was not previously allocated with the new operator.

This defect applies only to C++ source files.

Examples

Deleting Static Memory
void assign ones (void)
{

int ptr[l1l0];

for (int 1=0;1<10;i++)
*(ptr+i)=1;

delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a
memory location that was not dynamically allocated.

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.
void assign ones (void)
{
int ptr[l0];

for (int 1=0;1<10;i++)

3-250

Invalid deletion of pointer

*(ptr+i)=1;

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign ones (int num)

{

int *ptr = new int[num];

for (int 1=0; 1 < num; 1i++)
*(ptr+i) = 1;

delete[] ptr;
}

Mismatched new and delete
int main (void)
{

int *p scale = new int([5];

//more code using scal

delete p scale;

}

In this example, p_scale is initialized to an array of size 5 using new int[5].
However, p_scale is deleted with delete instead of delete[]. The new-delete pair
does not match. Do not use delete without the brackets when deleting arrays.

One possible correction is to add brackets so the delete matches the new []

declaration.

int main (void)
{
int *p scale = new int([5];

//more code using p scale

delete[] p_ scale;

3-251

3 Defects

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)
{

int *p scale = new int(5);
//more code using p_ scale

delete p_ scale;

Check Information

Group: Dynamic memory

Language: C++

Default: Off

Command-Line Syntax: BAD DELETE
Impact: High

CWE ID: 404

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid free of pointer | Memory leak

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-252

http://cwe.mitre.org/data/definitions/404.html

Invalid file position

Invalid file position

fsetpos () is invoked with a file position argument not obtained from fgetpos ()

Description

Invalid file position occurs when the file position argument of fsetpos () uses a value
that is not obtained from fgetpos ().

Risk

The function fgetpos (FILE *stream, fpos t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of

fsetpos (FILE *stream, const fpos t *pos), you might access an unintended
location in the stream.

Fix

Use the value returned from a successful call to fgetpos () as the file position argument
of fsetpos ().

Examples

memset () Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)

{
fpos t offset;
if (file == NULL)
{

3-253

3 Defects

3-254

/* Handle error */

}
/* Store initial position in variable 'offset' */
(void) memset (&offset, 0, sizeof (offset));

/* Read data from file */

/* Return to the initial position. offset was not
returned from a call to fgetpos () */
if (fsetpos(file, &offset) != 0)
{
/* Handle error */

}

return file;

In this example, fsetpos () uses offset as its file position argument. However, the
value of offset is set by memset (). The preceding code might access the wrong location
in the stream.

Call fgetpos (), and if it returns successfully, use the position argument in your call to
fsetpos ().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
fpos t offset;
if (file == NULL)
{
/* Handle error */
}
/* Store initial position in variable 'offset'
using fgetpos () */
if (fgetpos(file, &offset) != 0)
{

/* Handle error */

Invalid file position

/* Read data from file */

/* Back to the initial position */
if (fsetpos(file, &offset) != 0)
{

/* Handle error */

}

return file;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: INVALID FILE POS

Impact: Medium
CERT C ID: FI044-C
ISO/IEC TS 17961 ID: xfilepos

See Also

Introduced in R2017b

3-255

https://www.securecoding.cert.org/confluence/x/igAV

3 Defects

3-256

Invalid free of pointer

Pointer deallocation without a corresponding dynamic allocation

Description

Invalid free of pointer occurs when a block of memory released using the free
function was not previously allocated using malloc, calloc, or realloc.

Examples

Invalid Free of Pointer Error
#include <stdlib.h>

void Assign Ones (void)

{

int p[10];

for (int i=0;i<10;1i++)
* (p+i)=1;

free(p);

/* Defect: p does not point to dynamically allocated memory */

}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign Ones (void)
{
int p[10];
for (int 1=0;1<10;i++)

Invalid free of pointer

*(p+i)=1;
/* Fix: Remove deallocation of p */

}

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign Ones (int num)
{
int *p;
/* Fix: Allocate memory dynamically to p */
p=(int*) calloc (10,sizeof (int));
for (int 1=0;1<10;i++)
*(pt+i)=1;
free(p);

Check Information

Group: Dynamic Memory
Language: C | C++

Default: On

Command-Line Syntax: BAD FREE
Impact: High

CWE ID: 404, 590, 762

CERT C ID: MEMO00-C, MEM34-C
ISO/IEC TS 17961 ID: xfree

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid deletion of pointer

3-257

http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/762.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/wQE

3 Defects

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-258

Invalid use of == operator

Invalid use of == operator

Equality operation in assignment statement

Description

Invalid use of == operator occurs when an equality operator instead of an assignment
operator is used in a simple statement. A common correction is removing one of the equal
signs (=).

Examples

Equality Evaluation in for-Loop

void populate array(void)

{

int i = 0;
int § = 0;
int arrayl[4];
for (j == 5; J < 9; J++) {
arrayl[i] = j;
i++;
}
}
Inside the for-loop, the statement § == 5 tests whether j is equal to 5 instead of

setting j to 5. The for-loop iterates from O to 8 because j starts with a value of 0, not 5.
A by-product of the invalid equality operator is an out-of-bounds array access in the next
line.

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.

void populate array(void)

{

3-259

3 Defects

Check Information

Group: Programming

Language: C | C++

Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD EQUAL EQUAL USE
Impact: High

CWE ID: 482

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of = operator

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

»”

Introduced in R2013b

3-260

http://cwe.mitre.org/data/definitions/482.html

Invalid use of = operator

Invalid use of = operator

Assignment in conditional statement

Description

Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as i f or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk

+ Conditional statement tests the wrong values— The single equal sign operation
assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

* Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix
+ If the assignment is a bug, to check for equality, add a second equal sign (==).

+ If the assignment inside the conditional statement was intentional, to improve
readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

Examples

Single Equal Sign Inside an i £ Condition

#include <stdio.h>

3-261

3 Defects

3-262

void bad equals ex(int alpha, int beta)
{
if (alpha = beta)
{
printf ("Equal\n") ;
}
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality test(int alpha, int beta)
{
if (alpha == beta)
{
printf ("Equal\n");
}

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment not zero(int alpha, int beta)
{
if ((alpha = beta) != 0)
{
return alpha;

}

else

{

return 0;

}

Invalid use of = operator

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign and print (int alpha, int beta)
{
alpha = beta;
if (alpha)
{
printf ("%d", alpha);
}

Check Information

Group: Programming

Language: C | C++

Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD EQUAL USE

Impact: Medium

CWE ID: 481

CERT C ID: EXP45-C

ISO/IEC TS 17961 ID: boolasgn

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of == operator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-263

http://cwe.mitre.org/data/definitions/481.html
https://www.securecoding.cert.org/confluence/x/nYFtAg

3 Defects

Introduced in R2013b

3-264

Floating point comparison with equality operators

Floating point comparison with equality operators

Imprecise comparison of floating-point variables

Description

Floating point comparison with equality operators occurs when you use an
equality (==) or inequality (! =) operation with floating-point numbers. It is possible that
the equality or inequality of two floating-point values is not exact because floating-point
representation can be imprecise.

Polyspace does not raise a defect for an equality or inequality operation with floating-
point numbers when:

* The comparison is between two float constants.

float flt = 1.0;
if (flt == 1.1)

* The comparison is between a constant and a variable that can take a finite,
reasonably small number of values.

float x;

int rand = random() ;
switch (rand) {

case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;

default: x = 3.5; break; }

if (x==1.3)

+ The comparison is between floating-point expressions that contain only integer
values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {

if (random) break;

3-265

3 Defects

3-266

}

if (3*x+4==2*x-1)

if (3*x+4 == 1.3)

One of the operands is 0.0, unless you use the option flag ~-detect-bad-float-op-

on—-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane.

See Other.

At the command line, add the flag to your analysis command.

A

polyspace-bug-finder-nodesktop -sources filename
-checkers BAD FLOAT OP -detect-bad-float-op-on-zero

Examples

Floats Inequality in £or-loop

#include <math.h>
#include <float.h>

void func (void)

{

}

float f£f;
for (£ =1.0;, £ !=2.0, £ =£f + 0.1)
(void)printf ("Value: %f\n", f);

In this function, the for-loop tests the inequality of £ and the number 2.0 as a stopping
mechanism. The number of iterations is difficult to determine, or might be infinite,
because of the imprecision in floating-point representation.

Floating point comparison with equality operators

One possible correction is to use a different operator that is not as strict. For example, an
inequality like >= or <=.

#include <math.h>
#include <float.h>

void func (void)
{
float f;
for (£ =1.0; £ <=2.0; £=£f + 0.1)
(void)printf ("Value: %$f\n", f);

Check Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: BAD FLOAT OP

Impact: Medium
CWE ID: 873
CERT C ID: FLP02-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-267

http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/DgU

3 Defects

3-268

Invalid use of standard library floating point routine

Wrong arguments to standard library function

Description

Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

Rounding and absolute value routines

ceil, fabs, floor, fmod

Fractions and division routines

fmod, modf

Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, loglOQ

Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh,
asinh, atanh

Examples

Arc Cosine Operation

#include <math.h>

double arccosine (void) {

}

double degree = 5.0;
return acos (degree);

sinh,

tanh, acosh,

The input value to acos must be in the interval [-1, 1]. This input argument, degree,
1s outside this range.

Invalid use of standard library floating point routine

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine (void) {
double degree = 5.0;

double radian = degree * 3.14159 / 180.;

return acos (radian);

Check Information
Group: Numerical
Language: C | C++
Default: On

Command-Line Syntax: FLOAT STD LIB

Impact: High
CWE ID: 227, 369, 682, 873
CERT C ID: FLP03-C, FLP32-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results

Invalid use of standard library integer routine | Invalid use of

standard library memory routine | Invalid use of standard library

string routine | Invalid use of standard library routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-269

http://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/rgQ

3 Defects

Invalid use of standard library integer routine

Wrong arguments to standard library function

Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

* Character Conversion

toupper, tolower

* Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
ispunct, isspace, isupper, isxdigit

* Integer Division

div, 1ldiv
+ Absolute Values

abs, labs

Examples

Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue (void) {

int neg = INT MIN;
return abs (neg);

3-270

Invalid use of standard library integer routine

The input value to abs is INT_MIN. The absolute value of INT MINis INT MAX+1. This
number cannot be represented by the type int.

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue (void) {

int neg = INT MIN+1;
return abs (neqg);

Check Information

Group: Numerical

Language: C | C++

Default: On

Command-Line Syntax: INT STD LIB
Impact: High

CWE ID: 227, 369, 682, 872

ISO/IEC TS 17961 ID: chrsgnext

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results

Invalid use of standard library floating point routine | Invalid use
of standard library memory routine | Invalid use of standard library
string routine | Invalid use of standard library routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-271

http://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html

3 Defects

Introduced in R2013b

3-272

Invalid use of standard library memory routine

Invalid use of standard library memory routine

Standard library memory function called with invalid arguments

Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments.

Examples

Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy First Six Letters(void)
{
char strl[10],str2([5];

printf ("Enter string:\n");
scanf ("%$s",strl);

memcpy (str2,strl, 6);
/* Defect: Arguments of memcpy invalid: str2 has size < 6 */

return str2;

}

The size of string str2 is 5, but six characters of string strl are copied into str2 using
the memcpy function.

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

3-273

3 Defects

char* Copy First Six Letters(void)
{
/* Fix: Declare str2 with size 6 */
char strl[10],str2[6];

printf ("Enter string:\n");
scanf ("%s",strl);

memcpy (str2,strl, 6);
return str2;

}

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: MEM STD LIB

Impact: High

CWE ID: 120, 227

CERT C ID: API00-C, ARR38-C, ARR39-C, EXP08-C, EXP34-C, MSC15-C
ISO/IEC TS 17961 ID: nullref, libptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-274

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu

Invalid use of standard library routine

Invalid use of standard library routine

Wrong arguments to standard library function

Description

Invalid use of standard library routine occurs when you use invalid arguments with
a function from the standard library. This defect picks up errors related to other
functions not covered by float, integer, memory, or string standard library routines.

Examples

Calling print£f Without a String

#include <stdio.h>
#include <stdlib.h>

void print null (void) {

printf (NULL) ;
}

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

One possible correction is to change the input arguments to fit the requirements of the
standard library routine. In this example, the input argument was changed to a
character.

#include <stdio.h>
void print null (void) {

char zero val = '0';
printf ((const char*)zero val);

3-275

3 Defects

Check Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: OTHER STD LIB
Impact: High

CWE ID: 227

CERT C ID: API00-C, MSC15-C

ISO/IEC TS 17961 ID: strmod

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results

Invalid use of standard library integer routine | Invalid use of
standard library floating point routine | Invalid use of standard
library memory routine | Invalid use of standard library string
routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-276

https://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EoLu

Invalid use of standard library string routine

Invalid use of standard library string routine

Standard library string function called with invalid arguments

Description

Invalid use of standard library string routine occurs when a string library function
is called with invalid arguments.

Examples

Invalid Use of Standard Library String Routine Error

#include <string.h>
#include <stdio.h>

char* Copy String(void)

{

char *res;

char gbuffer[5],text[20]="ABCDEFGHIJKL";

res=strcpy (gbuffer, text);
/* Error: Size of text is less than gbuffer */

return (res);

}

The string text is larger in size than gbuf fer. Therefore, the function strcpy cannot
copy text into gbuffer.

One possible correction is to declare the destination string gbuf fer with equal or larger
size than the source string text.

#include <string.h>
#include <stdio.h>

char* Copy String(void)

3-277

3 Defects

char *res;
/*Fix: gbuffer has equal or larger size than text */
char gbuffer[20],text[20]="ABCDEFGHIJKL";

res=strcpy (gbuffer, text);

return (res);

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: STR STD LIB

Impact: High

CWE ID: 120, 227

CERT C ID: API00-C, ARR33-C, ARR38-C, MEM30-C, MSC15-C, STR31-C, STR32-C,
STR35-C

ISO/IEC TS 17961 ID: accfree, nullref, libptr, nonnullcs, taintformatio

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library memory routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-278

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/vAE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/KgE

Invalid va_list argument

Invalid va_list argument

Variable argument list used after invalidation with va_end or not initialized with
va_start or va_copy

Description

Invalid va_list argument occurs when you use a va_list variable as an argument to
a function in the vprintf group but:

* You do not initialize the variable previously using va_ start or va_ copy.

* You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer, format, args).
However, before the function call, you do not initialize the va 1list variable args using
either of the following:

* va_start(args, paramName).paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func (int
n, char ¢, ...) {},cisthelast named argument.

* va_copy(args, anotherList).anotherList is another valid va 1ist variable.

Risk

The behavior of an uninitialized va 1list argument is undefined. Calling a function with
an uninitialized va 1list argument can cause stack overflows.

Fix

Before using a va_1list variable as function argument, initialize it with va start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

3-279

3 Defects

Examples

va_list Variable Used Following Call to va_end

#include <stdarg.h>
#include <stdio.h>

int call vfprintf (int line, const char *format, ...) {
va list ap;
int r=0;

va_ start (ap, format):;
r = vfprintf (stderr, format, ap);
va_end(ap) ;

r += vfprintf (stderr, format, ap);
return r;

}

In this example, the va 1list variable ap is used in the vfprintf function, after the
va_end macro is called.

One possible correction is to call va_end only after all uses of the va_1list variable.

#include <stdarg.h>
#include <stdio.h>

int call vfprintf (int line, const char *format, ...) {
va list ap;
int r=0;
va_start (ap, format);
r = vfprintf (stderr, format, ap);
r += vfprintf (stderr, format, ap);

va_end(ap) ;

return r;

3-280

Invalid va_list argument

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: INVALID VA LIST ARG
Impact: High

CWE ID: 628

CERT C ID: MSC39-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-281

http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/VwCMAg

3 Defects

3-282

Large pass-by-value argument

Large argument passed by value between functions

Description

Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value. For variables larger than 64 bytes, pass the value
by pointer or by reference to save stack space and copy time.

In C code, when a function returns by value, the return value is copied to the caller.
Therefore, this defect appears on functions that have large return values. In C++ code, if
a function return value is of class type, under certain conditions, the standard allows
compilers to avoid copying the return value (C++98: Section 12.8, Item 15; C++11:
Section 12.8, Item 31). Most compilers do not perform a copy in such cases. This behavior
1s called return value optimization. In such cases, Polyspace Bug Finder does not produce
this defect if a large object is returned by value.

Examples

Large Function Argument

typedef struct s userid {
char name[2];
int idnumber[100];

} userid;

char username (userid first) {
return first.name[0];

}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

Large pass-by-value argument

One possible correction is to pass the argument by reference instead of by value. In this
corrected example, the pointer to a userid structure is passed instead of the actual

structure.

typedef struct s userid {
char name[2];
int idnumber[100];

} userid;

char username (userid *first) {
return (*first) .name[0];

Large Function Return Value

#include <stdlib.h>

#define initialSize 4
#define idSize 100

typedef struct {
char initials[initialSize];
int id[idSize];

} userId;

userId* getAddress (void);
assignValues (char*, int*);

userId username (void) {

userId * newId = getAddress();
assignValues ((*newId) .initials,

return *newld;

}

(*newId) .id) ;

In this example, the function username returns a large structure *newId by value.
When a function calls username, the value in *newId is copied to the caller.

One possible correction is to return the large structure by reference. In this corrected
example, the pointer to structure newId is returned from the function username.

#include <stdlib.h>

3-283

3 Defects

#define initialSize 4
#define idSize 100

typedef struct {
char initials[initialSize];
int id[idSize];

} userId;

userId* getAddress (void);
assignValues (char*, int*);

userId * username (void) {
userId * newlId = getAddress();
assignValues ((*newlId) .initials, (*newId).id);
return newld;

Check Information

Group: Good practice

Language: C | C++

Default: Off

Command-Line Syntax: PASS BY VALUE
Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2013b

3-284

Library loaded from externally controlled path

Library loaded from externally controlled path

Using a library argument from an externally controlled path

Description

Library loaded from externally controlled path looks for libraries loaded from fixed
or controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can
change:

* The library that the program loads, replacing the intended library and commands.

* The environment in which the library executes, giving unintended permissions and
capabilities to the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system ()
does not require a full path because it can use the PATH environment variable. However,
execl () and execv () do require the full path.

Examples

Call Custom Library

#include <stdlib.h>
#include <stdio.h>

3-285

3 Defects

3-286

#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
SIZE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b

void* libhandle

char 1ib[SIZE128
char* userpath = getenv ("LD LIBRARY PATH");
strncpy(lib, userpath, SIZE128);

strcat (1lib, "/libX.so");:

libhandle = dlopen(lib, 0x00001);

return libhandle;

void* taintedpathlib ()
]

}

This example loads the library 1ibX. so from an environment variable

LD_LIBRARY PATH. An attacker can change the library path in this environment
variable. The actual library you load could be a different library from the one that you
intend.

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
SIZE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b

Library loaded from externally controlled path

/* Function to sanitize a string */

int sanitize str(char* s, size t n) {
/* strlen is used here as a kind of firewall for tainted string errors */
int res = (strlen(s) > 0 && strlen(s) < n);
return res;

}
void* taintedpathlib (char* userpath) {
void* libhandle = NULL;
if (sanitize str (userpath, SIZE128)) {
char 1ib[SIZE128] = "";

if (strncmp (userpath, "/usr", 4)!=0) {
strncpy(lib, userpath, SIZE128);
strcat (1lib, "/libX.so");:
libhandle = dlopen(lib, RTLD LAZY);
}
}

return libhandle;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED PATH LIB

Impact: Medium
CWE ID: 114, 426
CERT C ID: API00-C, STR02-C, WINO0O-C

See Also

Execution of externally controlled command | Use of externally
controlled environment variable | Command executed from externally
controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-287

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/-AY
https://www.securecoding.cert.org/confluence/x/NYDiBg

3 Defects

Introduced in R2015b

3-288

Line with more than one statement

Line with more than one statement

Multiple statements on a line

Description

Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Examples

Single-Line Initialization

int multi init (void) {
int abc = 4; int efg = 0; //defect

return abc*efg;

}

In this example, abc and efg are initialized on the second line of the function as
separate statements.

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.

int multi init(void

)
int a = 4, b = 0;

return a*b;

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.

int multi init (void) {
int a = 4;

3-289

3 Defects

3-290

int b = 0;

return a*b;

Single-Line Loops

int multi loop (void) {

}

int a, b = 0;

int index = 1;

int tab[9] = {1,1,2,3,5,8,13,21};
for(a=0; a < 3; a++) {b+=a;} // no defect

for (b=0; b < 3; b++) {a+=b; index=b;} //defect

while (index < 7) {index++; tab[index] = index * index;} //defect
return a*b;

In this example, there are three loops coded on single lines, each with multiple
semicolons.

The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

One possible correction is to use a new line for each statement after the loop declaration.

int multi loop (void) {

int a, b = 0;
int index = 1;
int tab([9] = {1,1,2,3,5,8,13,21};

for(a=0; a < 3; a++) {b+=a;}

for (b=0; b < 3; b++){
at=b;

Line with more than one statement

index=b;

}

while (index < 7){

index++;

tab[index] = index * index;
}

return a*b;

Single-line Conditionals

int multi if(void) {

int a, b = 1;
if(a == 0) { a++;} // no defect
else if (b == 1) {b++; a *= b;} //defect

¥
In this example, there are two conditional statements an: 1 f and an else if. Theif

line does not raise a defect because only one statement follows the condition. The else
if statement does raise a defect because two statements follow the condition.

One possible correction is to use a new line for conditions with multiple statements.

int multi if (void) {
int a, b = 1;

if(a == 0) a++;
else if(b == 1){
b++;
a *= b;

Check Information

Group: Good practice

Language: C | C++

Default: Off

Command-Line Syntax: MORE THAN ONE STATEMENT

3-291

3 Defects

Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-292

Load of library from a relative path can be controlled by an external actor

Load of library from a relative path can be
controlled by an external actor

Library loaded with relative path is vulnerable to malicious attacks

Description

Load of library from a relative path can be controlled by an external actor
detects library loading routines that load an external library. If you load the library
using a relative path or no path, Bug Finder flags the loading routine as a defect.

Risk

By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix

When you load an external library, specify the full path.

Examples

Open Library with Library Name

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative path()

{
dlopen ("liberty.dl1l",RTLD LAZY);

}

3-293

3 Defects

3-294

In this example, d1open opens the 1iberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative path ()

{
dlopen ("/home/my libs/library/liberty.dll",RTLD_LAZY);
}

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: RELATIVE PATH LIB
Impact: Medium

CWE ID: 114, 427

CERT C ID: WIN00-C

See Also

Execution of a binary from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Library loaded from
externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/427.html
https://www.securecoding.cert.org/confluence/x/NYDiBg

Load of library from a relative path can be controlled by an external actor

Introduced in R2015b

3-295

3 Defects

3-296

Loop bounded with tainted value

Loop controlled by a value from an unsecure source

Description

Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix
Before starting the loop, validate unknown boundary and iterator values.

Examples

Loop Boundary From Input Argument

enum {
SIZE10 = 10,
SIZE100 = 100,
SIZE128 = 128

b

int taintedloopboundary(int count) {

int res = 0;
for (int i=0 ; 1 < count; ++1i) {
res += i;

}

return res;

Loop bounded with tainted value

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
SIZE10 = 10,
SIZE100 = 100,
SIZE128 = 128

int taintedloopboundary(int count) {
int res = 0;

if (count>0 && count<SIZE128) {
for (int i=0 ; i<count ; ++1i) {
res += 1i;
}
}

return res;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED LOOP BOUNDARY
Impact: Medium

CWE ID: 606

CERT C ID: INT04-C, MSC21-C

ISO/IEC TS 17961 ID: taintsink

See Also

Array access with tainted index | Pointer dereference with tainted
offset

3-297

http://cwe.mitre.org/data/definitions/606.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/EwDJAQ

3 Defects

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-298

Member not initialized in constructor

Member not initialized in constructor

Constructor does not initialize some members of a class

Description

Non-initialized member occurs when a class constructor has at least one execution
path on which it does not initialize some data members of the class.

The defect does not appear in the following cases:

* Empty constructors.

* The non-initialized member is not used in the code.

Risk

The members that the constructor does not initialize can have unintended values when
you read them later.

Initializing all members in the constructor makes it easier to use your class. If you call a
separate method to initialize your members and then read them, you can avoid
uninitialized values. However, someone else using your class can read a class member
before calling your initialization method. Because a constructor is called when you create
an object of the class, if you initialize all members in the constructor, they cannot have
uninitialized values later on.

Fix

The best practice is to initialize all members in your constructor, preferably in an
initialization list.

3-299

3 Defects

Examples

Non-Initialized Member

class MyClass {
public:
explicit MyClass (int) ;
private:
int iy
char c;
}i

MyClass::MyClass (int flag) {

if(flag == 0) {
1 =0;
_C = vav;
}
else {
i=1;

In this example, if f1ag is not 0, the member c is not initialized.

The defect appears on the closing brace of the constructor. Following are some tips for
navigating in the source code:
* On the Result Details pane, see which members are not initialized.

+ To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you can see all the
members, including those members that are not initialized in the constructor.

One possible correction is to initialize all members of the class MyClass for all values of

flag.
class MyClass {
public:
explicit MyClass (int) ;
private:
int iy
char c;

3-300

Member not initialized in constructor

b

MyClass::MyClass (int flag) {
if (flag == 0) {

1 =0;
_C = lal,.
}
else {
i 1;
c — lbl,

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: NON INIT MEMBER

Impact: Medium
CWE 1ID: 456, 457, 908
ISO/IEC TS 17961 ID: uninitref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-301

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html

3 Defects

3-302

Memory allocation with tainted size

Size argument to memory function is from an unsecure source

Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc ormalloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Examples
Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug taintedmemoryallocsize(size t size) {
int* p = (int*)malloc(size);
return p;

}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

Memory allocation with tainted size

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive

and less than the maximum size.

#include "stdlib.h"

enum {
SIZE10 = 10,
SIZE100 = 100,
SIZE128 = 128
bi

int* corrected taintedmemoryallocsize(int size) {
int* p = NULL;

if (size>0 && size<SIZE128) { /* Fix:
p = (int*)malloc((unsigned int)size);

}

return p;

Result Information
Group: Tainted Data
Language: C | C++
Default: Off

Command-Line Syntax: TAINTED MEMORY ALLOC SIZE

Impact: Medium
CWE ID: 789

Check entry range before use */

CERT C ID: API00-C, ARR32-C, INT04-C, MEMO07-C, MEM10-C, MEM11-C, MEM35-C

ISO/IEC TS 17961 ID: taintsink

See Also

Unprotected dynamic memory allocation

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-303

http://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/eQo
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/GwI
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/2wE

3 Defects

Introduced in R2015b

3-304

Memory comparison of padding data

Memory comparison of padding data

memcmp compares data stored in structure padding

Description

Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
char memberl;
int member?2;

b

structType varl;
structType var2;

if (memcmp (&varl, &var2,sizeof (varl)))

{...}

Risk

If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

3-305

3 Defects

3-306

Fix

Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use
this function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Examples

Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal error() abort()

typedef struct s padding
{
char c;
int i;
unsigned int bfl:1;
unsigned int bf2:2;
unsigned char buffer[20];
} S _Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted memory zone(void *ptr, size t sz);

int func(const S Padding *left, const S Padding *right)
{

if (!trusted memory zone((void *)left, sizeof (S Padding)) ||
!trusted memory zone ((void *)right, sizeof (S Padding))) {

Memory comparison of padding data

fatal error();

if (0 == memcmp (left, right, sizeof (S Padding)))
{
return 1;
}
else
return 0;

In this example, memcmp compares byte-by-byte the two structures that 1eft and right
point to. Even if the values stored in the structure members are the same, the
comparison can show an inequality if the meaningless values in the padding bytes are
not the same.

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal error() abort()

typedef struct s padding
{
char c;
int i;
unsigned int bfl:1;
unsigned int bf2:2;
unsigned char buffer[20];
} S _Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted memory zone(void *ptr, size t sz);

int func(const S Padding *left, const S Padding *right)
{

3-307

3 Defects

3-308

if (!trusted memory zone((void *)left, sizeof (S Padding))

!trusted memory zone((void *)right, sizeof (S Padding)))

fatal error();

}

return ((left->c == right->c) &&
(left->1i == right->1i) &&
(left->bfl == right->bfl) &&
(left->bf2 == right->bf2) &&
(memcmp (left->buffer, right->buffer, 20) == 0));

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: MEMCMP PADDING DATA
Impact: Medium

CWE ID: 188

CERT C ID: EXP42-C

ISO/IEC TS 17961 ID: padcomp

See Also

Polyspace Results
Memory comparison of strings

Introduced in R2017a

{

https://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/CoDYBg

Memory comparison of strings

Memory comparison of strings

memcmp compares data stored in strings after the null terminator

Description

Memory comparison of strings occurs when:

* You compare two strings byte-by-byte with the memcmp function.

* The number of bytes compared is such that you compare meaningless data stored
after the null terminator.

For instance:
memcmp (stringl, string2, sizeof (stringl))

can compare bytes in the string after the null terminator.

Risk

The null terminator signifies the end of a string. Comparison of bytes after the null
terminator is meaningless. You might reach the false conclusion that two strings are not
equal, even if the bytes before the null terminator store the same value.

Fix

Use strcmp for string comparison. The function compares strings only up to the null
terminator.

If you use memcmp for a byte-by-byte comparison of two strings, avoid comparison of bytes
after the null terminator. Determine the number of bytes to compare by using the
strlen function.

3-309

3 Defects

Examples

Strings Compared with memcmp

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func{()

{
char s1[SIZE20] = T"abc";
char s2[SIZE20] = "abc";

return memcmp (sl, s2, sizeof(sl));

}

In this example, sizeof returns the length of the entire array s1, which is 20. However,
only the first three bytes of the string are relevant.

Even though s1 and s2 hold the same value, the comparison with memcmp can show a
false inequality.

One possible correction is to determine the number of bytes to compare using the strlen
function. strlen returns the number of bytes before the null terminator (and excluding
the null terminator itself).

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()

{
char s1[SIZE20] = T"abc";
char s2[SIZE20] = "abc";

return memcmp (sl, s2, strlen(sl));

3-310

Memory comparison of strings

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: MEMCMP_STRINGS

Impact: Medium
CWE ID: 188

See Also

Polyspace Results
Memory comparison of padding data

Introduced in R2017a

3-311

http://cwe.mitre.org/data/definitions/188.html

3 Defects

3-312

Memory leak

Memory allocated dynamically not freed

Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

* Within the function, you free the memory using free or delete.
* The function returns the pointer assigned by malloc, calloc, realloc, or new.

* The function stores the pointer in a global variable or in a parameter.

Examples

Pointer with Dynamic Memory

#include<stdlib.h>
#include<stdio.h>

void assign memory (void)
{
int* pi = (int*)malloc(sizeof (int));
if (pi == NULL)
{
printf ("Memory allocation failed");
return;

}

*pi = 42;
/* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign memory
does not free the memory, nor does it return pi.

Memory leak

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign memory (void)
{
int* pi = (int*)malloc(sizeof (int));
if (pi == NULL)
{
printf ("Memory allocation failed");
return;

*pi = 42;

/* Fix: Free the pointer pi*/
free(pi);

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign memory (void)
{
int* pi = (int*)malloc(sizeof (int));
if (pi == NULL)
{
printf ("Memory allocation failed");
return (pi);

*pi = 42;

/* Fix: Return the pointer pi*/
return (pi);

3-313

3 Defects

Memory Leak with New/Delete

#define NULL '\O'

void initialize arrl (void)
{
int *p scalar = new int(5);

}

void initialize arr2(void)
{
int *p array = new int([5];

}

In this example, the functions create two variables, p scalar and p array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\O'

void initialize arrs(void)

{
int *p scalar = new int(5);
int *p array = new int([5];

delete p scalar;
p_scalar = NULL;

delete[] p array;
p_scalar = NULL;

Check Information

Group: Dynamic memory

3-314

Memory leak

Language: C | C++

Default: Off

Command-Line Syntax: MEM LEAK

Impact: Medium

CWE 1ID: 401, 404

CERT C ID: MEM11-C, MEM12-C, MEM31-C
ISO/IEC TS 17961 ID: fileclose

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-315

http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/8AG7AQ
https://www.securecoding.cert.org/confluence/x/vQE

3 Defects

3-316

Mismatched alloc/dealloc functions on Windows

Improper deallocation function causes memory corruption issues

Description

Mismatched alloc/dealloc functions on Windows occurs when you use a Windows
deallocation function that is not properly paired to its corresponding allocation function.

Risk

Deallocating memory with a function that does not match the allocation function can
cause memory corruption or undefined behavior. If you are using an older version of
Windows, the improper function can also cause compatibility issues with newer versions.

Fix

Properly pair your allocation and deallocation functions according to the functions listed
in this table.

Allocation Function Deallocation Function
malloc () free()

realloc () free()

calloc () free()
_aligned malloc() _aligned free()
_aligned offset malloc() _aligned free()
_aligned realloc() _aligned free()
_aligned offset realloc() _aligned free()
_aligned recalloc() _aligned free()
_aligned offset recalloc() _aligned free()
~mallocal() _freea()
LocalAlloc () LocalFree ()

Mismatched alloc/dealloc functions on Windows

Allocation Function Deallocation Function
LocalReAlloc () LocalFree ()
GlobalAlloc () GlobalFree ()
GlobalReAlloc () GlobalFree ()
VirtualAlloc () VirtualFree ()
VirtualAllocEx () VirtualFreeEx ()
VirtualAllocExNuma () VirtualFreeEx ()
HeapAlloc () HeapFree ()
HeapReAlloc () HeapFree ()
Examples

Memory Deallocated with Incorrect Function

#ifdef
#includ
#else
#define
typedef
typedef
typedef
typedef
extern
extern
extern
#endif

#define

_WIN32

e <windows.h>

_WIN32

void *HANDLE;

HANDLE HGLOBAL;

HANDLE HLOCAL;

unsigned int UINT;

HLOCAL LocalAlloc (UINT uFlags, UINT uBytes);
HLOCAL LocalFree (HLOCAL hMem) ;

HGLOBAL GlobalFree (HGLOBAL hMem) ;

SIZES 9

void func (void)

{
/*

Memory allocation */

HLOCAL p = LocalAlloc(0x0000, SIZE9);

if

(p) |
/* Memory deallocation. */

3-317

3 Defects

GlobalFree (p);

In this example, memory is allocated with LocallAlloc (). The program then
erroneously uses GlobalFree () to deallocate the memory.

When you allocate memory with LocalAllocate (), use LocalFree () to deallocate the
memory.

#ifdef WIN32

#include <windows.h>

#else

#define WIN32

typedef void *HANDLE;

typedef HANDLE HGLOBAL;

typedef HANDLE HLOCAL;

typedef unsigned int UINT;

extern HLOCAL LocalAlloc (UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree (HLOCAL hMem) ;
extern HGLOBAL GlobalFree (HGLOBAL hMem) ;
#endif

#define SIZE9 9
void func (void)

{
/* Memory allocation */
HLOCAL p = LocalAlloc (0x0000, SIZE9);
if (p) {
/* Memory deallocation. */
LocalFree (p);

Result Information

Group: Dynamic memory
Language: C | C++
Default: Off

3-318

Mismatched alloc/dealloc functions on Windows

Command-Line Syntax: WIN MISMATCH DEALLOC

Impact: Low
CWE ID: 404, 762
CERT C ID: WIN30-C

See Also

Invalid deletion of pointer | Invalid free of pointer

Introduced in R2017b

3-319

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/FwD_Bg

3 Defects

3-320

Mismatch between data length and size

Data size argument is not computed from actual data length

Description

Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a
new location. If the extra memory contains sensitive information, the attacker can now
access that data.

This defect is similar to the SSL Heartbleed bug.
Fix

When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

Examples

Copy Buffer of Data

#include <stdlib.h>
#include <string.h>

typedef struct buf mem st
char *data;

Mismatch between data length and size

size t max; /* size of buffer */
} BUF MEM;
extern BUF MEM beta;
int cpy data (BUF MEM *alpha)
{
BUF MEM *os = alpha;
int num, length;
if (alpha == 0x0) return 0;
num = 0;
length = *(unsigned short *)os->data;

memcpy (& (beta.data[num]), os->data + 2,

return(l);

length);

This function copies the buffer alpha into a buffer beta. However, the 1ength variable

is not related to data+2.

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta

structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf mem st (
char *data;
size t max;
} BUF MEM;

extern BUF MEM beta;

int cpy data (BUF MEM *alpha)
{

BUF MEM *os = alpha;

int num, length;

if (alpha == 0x0) return 0;
num = 0;

/* size of buffer */

3-321

3 Defects

length = *(unsigned short *)os->data;
if (length<(os->max -2)) {

memcpy (& (beta.data[num]), os->data + 2, length);
}

return(l);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: DATA LENGTH MISMATCH

Impact: Medium
CWE ID: 130, 240
CERT C ID: ARR38-C

See Also

Copy of overlapping memory

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-322

http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/240.html
https://www.securecoding.cert.org/confluence/x/EYCGB

Missing block cipher initialization vector

Missing block cipher initialization vector

Non-NULL initialization vector is not associated with the cipher context for encryption or
decryption

Description

Missing block cipher initialization vector occurs when you encrypt or decrypt data
using a NULL initialization vector (IV).

Note You can initialize your cipher context with a NULL initialization vector (IV).
However, if your algorithm requires an IV, before the encryption or decryption step, you
must associate the cipher context with a non-NULL IV.

Risk

Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If
you use a NULL IV, your encrypted data is vulnerable to such attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a NULL IV, you get the same ciphertext
when encrypting the same plaintext. Your data becomes vulnerable to dictionary attacks.

Fix
Before your encryption or decryption steps

ret = EVP EncryptUpdate (&ctx, out buf, &out len, src, len)
associate your cipher context ctx with a non-NULL initialization vector.

ret = EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv)

3-323

3 Defects

3-324

Examples

NULL Initialization Vector Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal error() abort()

unsigned char *out buf;
int out len;

int func(EVP_CIPHER CTX *ctx, unsigned char *key, unsigned char *src, int len) {
if (key == NULL)
fatal error();

/* Last argument is initialization vector */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, NULL);

/* Update step with NULL initialization vector */
return EVP EncryptUpdate (ctx, out buf, &out len, src, len);
}

In this example, the initialization vector associated with the cipher context ctx is NULL.
If you use this context to encrypt your data, your data is vulnerable to dictionary attacks.

Use a strong random number generator to produce the initialization vector. The
corrected code here uses the function RAND bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>

#define fatal error() abort()
#define SIZEl16 16

unsigned char *out buf;
int out len;

int func(EVP_CIPHER CTX *ctx, unsigned char *key, unsigned char *src, int len) {

Missing block cipher initialization vector

if (key == NULL)

fatal error();
unsigned char iv[SIZEl6];
RAND bytes (iv, 16);

/* Last argument is initialization vector */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update step with non-NULL initialization vector */
return EVP EncryptUpdate(ctx, out buf, &out len, src, len);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER NO IV

Impact: Medium
CWE ID: 310, 326, 329

Introduced in R2017a

3-325

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

3 Defects

3-326

Missing break of switch case

No comments at the end of switch case without a break statement

Description

Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples

Switch Without Break Statements

enum WidgetEnum { WE W, WE X, WE Y, WE Z } widget type;
extern void demo do something for WE W(void);

extern void demo do something for WE X (void);

extern void demo report error (void);

void bug missingswitchbreak (enum WidgetEnum wt)

Missing break of switch case

/*
In this non-compliant code example, the case where widget type is WE W lacks a
break statement. Consequently, statements that should be executed only when
widget type is WE X are executed even when widget type is WE W.

*/

switch (wt)

{
case WE W:

demo _do something for WE W();
case WE X:

demo _do something for WE X();
default:

/* Handle error condition */

demo_report_error();

}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE W, WE X, WE Y, WE 7 } widget type;

extern void demo do something for WE W(void);
extern void demo do something for WE X (void);
extern void demo report error (void);

void corrected missingswitchbreak (enum WidgetEnum wt)
{
switch (wt)
{
case WE W:
demo _do something for WE W();
/* fall through to WE_X*/
case WE X:
demo _do something for WE X();

3-327

3 Defects

break;

default:
/* Handle error condition */
demo_report_error();

Result Information

Group: Good Practice

Language: C | C++

Default: Off

Command-Line Syntax: MISSING SWITCH BREAK

Impact: Low
CWE ID: 484
CERT C ID: MSC17-C

See Also

Missing case for switch condition

Introduced in R2016b

3-328

http://cwe.mitre.org/data/definitions/484.html
https://www.securecoding.cert.org/confluence/x/YIFLAQ

Missing byte reordering when transferring data

Missing byte reordering when transferring data

Different endianness of host and network

Description

Missing byte reordering when transferring data occurs when you do not use a byte
ordering function:

+ Before sending data to a network socket.

+ After receiving data from a network socket.

Risk

Some system architectures implement little endian byte ordering (least significant byte
first), and other systems implement big endian (most significant byte first). If the
endianness of the sent data does not match the endianness of the receiving system, the
value returned when reading the data is incorrect.

Fix

After receiving data from a socket, use a byte ordering function such as ntohl (). Before
sending data to a socket, use a byte ordering function such as htonl () .

Examples

Data Transferred Without Byte Reordering

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>

3-329

3 Defects

3-330

#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
unsigned int num; /* assume int is 32-bits */
if (server)
{
/* Server side */
num = 0x17;
/* Endianness of server host may not match endianness of network. */
if (send(sock, (void *)&num, sizeof (num), 0) < (int)sizeof (num))
{
/* Handle error */
}
return 0;
}
else {
/* Endianness of client host may not match endianness of network. */
if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof (num))
{
/* Handle error */

}

/* Comparison may be inaccurate */
if (num> 255)
{

return 255;

}

else

{

return num;

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a
network to the client from the server. If the server host is little endian and the network
is big endian, num is transferred as 0x17000000. The client then reads an incorrect
value for num and compares it to a local numeric value.

Missing byte reordering when transferring data

Before sending num from the server host, use htonl () to convert from host to network
byte ordering. Similarly, before reading num on the client host, use ntohl () to convert

from network to host byte ordering.

<stdio.h>
<stdlib.h>
<stdint.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<byteswap.h>
<unistd.h>
<string.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include
unsigned int func(int sock,
{

unsigned int num;

if (server)
{
/* Server side */
num = 0x17;
/* Convert to network byte order.
num = htonl (num) ;
if (send(sock, (void *) &num,
{
/* Handle error */
}
return 0;
}
else {

if
{

(recv (sock, (void *)&num,
/* Handle error */

}

/* Convert to host byte order.
num = ntohl (num) ;
if (num > 255)
{
return 255;
}

else

int server)

sizeof (num), 0) <

sizeof (num),

/* assume int is 32-bits */

*/

(int)sizeof (num))

0) < (int) sizeof (num))

*/

3-331

3 Defects

return num;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: MISSING BYTESWAP

Impact: Medium
CWE ID: 188, 198
CERT C ID: POS39-C

See Also

Introduced in R2017b

3-332

http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/198.html
https://www.securecoding.cert.org/confluence/x/IgDAAQ

Missing case for switch condition

Missing case for switch condition

switch variable not covered by cases and default case is missing

Description

Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate
the normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value,
the resulting behavior can be anticipated.

Examples

Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E

3-333

3 Defects

ADMIN=1,

GUEST,

UNKNOWN = 0
} LOGIN;

static LOGIN system access (const char *username) {
LOGIN user = UNKNOWN;

if (strcmp(username, "root") == 0)
user = ADMIN;

if (strcmp(username, "friend") == 0)
user = GUEST;

return user;

int identify bad user (const char * username)

{

int r=0;

switch(system access (username))

{

case ADMIN:
r =1;
break;

case GUEST:
r = 2;

printf ("Welcome!\n") ;
return r;

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

3-334

Missing case for switch condition

typedef enum E
{
ADMIN=1,
GUEST,
UNKNOWN = 0
} LOGIN;

static LOGIN system access (const char *username)
LOGIN user = UNKNOWN;

if (strcmp(username, "root") == 0)
user = ADMIN;

if (strcmp(username, "friend") == 0)
user = GUEST;

return user;

int identify bad user (const char * username)

{

int r=0;

switch(system access (username))
{
case ADMIN:
r =1;
break;
case GUEST:
r = 2;
break;
default:
printf ("Invalid login credentials!\n");

printf ("Welcome!\n") ;
return r;

Result Information
Group: Security

3-335

3 Defects

Language: C | C++

Default: Off

Command-Line Syntax: MISSING SWITCH CASE
Impact: Low

CWE ID: 478

CERT C ID: MSC01-C, MSC07-C

ISO/TEC TS 17961 ID: swtchdflt

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-336

http://cwe.mitre.org/data/definitions/478.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy

Missing cipher algorithm

Missing cipher algorithm

An encryption or decryption algorithm is not associated with the cipher context

Description

Missing cipher algorithm occurs when you do not assign a cipher algorithm when
setting up your cipher context.

You can initialize your cipher context without an algorithm. However, before you encrypt
or decrypt your data, you must associate the cipher context with a cipher algorithm.

Risk
A missing cipher algorithm can lead to run-time errors or at least, non-secure ciphertext.

Before encryption or decryption, you set up a cipher context that has the information
required for encryption: the cipher algorithm and mode, an encryption or decryption key
and an initialization vector (for modes that require initialization vectors).

ret = EVP_EncryptInit (&ctx, EVP aes 128 cbc(), key, 1iv)

The function EVP_aes 128 cbc () specifies that the Advanced Encryption Standard

(AES) algorithm must be used for encryption. The function also specifies a block size of
128 bits and the Cipher Bloch Chaining (CBC) mode.

Instead of specifying the algorithm, you can use NULL in the initialization step.
However, before using the cipher context for encryption or decryption, you must perform
an additional initialization that associates an algorithm with the context. Otherwise, the
update steps for encryption or decryption can lead to run-time errors.

Fix
Before your encryption or decryption steps

ret = EVP EncryptUpdate (&ctx, out buf, &out len, src, len)

associate your cipher context ctx with an algorithm.

3-337

3 Defects

3-338

ret = EVP EncryptInit(ctx, EVP aes 128 cbc(), key, iv)

Examples

Algorithm Missing During Context Initialization

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE1l6];
void func (void) {
EVP CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP CIPHER CTX init(ctx);
EVP EncryptInit ex(ctx, NULL, NULL, key, iv);
}

In this example, an algorithm is not provided when the cipher context ctx is initialized.

Before you encrypt or decrypt your data, you have to provide a cipher algorithm. If you
perform a second initialization to provide the algorithm, the cipher context is completely
re-initialized. Therefore, the current initialization statement using

EVP EncryptInit ex is redundant.

One possible correction is to provide an algorithm when you initialize the cipher context.
In the corrected code below, the routine EVP_aes 128 cbc invokes the Advanced
Encryption Standard (AES) algorithm. The routine also specifies a block size of 128 bits
and the Cipher Block Chaining (CBC) mode for encryption.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZEl6];
unsigned char iv[SIZEl6];

Missing cipher algorithm

void func(unsigned char *src, int len, unsigned char *out buf, int out len) ({
EVP_CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

/* Initialization of cipher context */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update steps for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER NO ALGORITHM

Impact: Medium
CWE ID: 310, 573

Introduced in R2017a

3-339

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/573.html

3 Defects

3-340

Missing cipher data to process

Final encryption or decryption step is performed without previous update steps

Description

Missing cipher data to process occurs when you perform the final step of a block
cipher encryption or decryption incorrectly.

For instance, you do one of the following:

* You do not perform update steps for encrypting or decrypting the data before
performing a final step.

/* Initialization of cipher context */
ret = EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Missing update step */

/* Final step */
ret = EVP EncryptFinal ex(ctx, out buf, &out len);

* You perform consecutive final steps without intermediate initialization and update
steps.

/* Initialization of cipher context */
ret = EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update step(s) */
ret = EVP EncryptUpdate (ctx, out buf, &out len, src, len);

/* Final step */
ret = EVP EncryptFinal ex(ctx, out buf, &out len);

/* Missing initialization and update */

/* Second final step */
ret = EVP EncryptFinal ex(ctx, out buf, &out len);

* You perform a cleanup of the cipher context and then perform a final step.

/* Initialization of cipher context */
ret = EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

Missing cipher data to process

/* Update step(s) */
ret = EVP EncryptUpdate (ctx, out buf, &out len, src, len);

/* Cleanup of cipher context */
EVP CIPHER CTX cleanup (ctx);

/* Second final step */
ret = EVP EncryptFinal ex(ctx, out buf, &out len);

Risk

Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you perform the final step before performing the update steps, or perform the final step

when there is no data to process, the behavior is undefined. You can also encounter run-
time errors.

Fix
Perform encryption or decryption in this sequence:

+ Initialization of cipher context
+ Update steps
* Final step

+ Cleanup of context

Examples

Missing Update Steps for Encryption Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>

3-341

3 Defects

#define SIZE16 16

unsigned char *out buf;
int out len;

unsigned char key[SIZEl6];
unsigned char iv[SIZEl6];

void func (void) {
EVP_CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

/* Initialization of cipher context */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Missing update steps for encryption */

/* Final encryption step */
EVP EncryptFinal ex(ctx, out buf, &out len);

In this example, after the cipher context is initialized, there are no update steps for
encrypting the data. The update steps are supposed to encrypt one or more blocks of
data, leaving the final step to encrypt data that is left over in a partial block. If you
perform the final step without previous update steps, the behavior is undefined.

Perform update steps for encryption before the final step. In the corrected code below, the
routine EVP_EncryptUpdate performs the update steps.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out buf;
int out len;

unsigned char key[SIZEl6];
unsigned char iv[SIZEl6];

void func(unsigned char *src, int len) {

EVP_CIPHER CTX *ctx = EVP CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

3-342

Missing cipher data to process

/* Initialization of cipher context */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update steps for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);

/* Final encryption step */
EVP EncryptFinal ex(ctx, out buf, &out len);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER NO DATA

Impact: Medium
CWE ID: 311, 325, 372, 664

Introduced in R2017a

3-343

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

3 Defects

3-344

Missing cipher final step

You do not perform a final step after update steps for encrypting or decrypting data

Description

Missing cipher final step occurs when you do not perform a final step after your
update steps for encrypting or decrypting data.

For instance, you do the following:

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, 1iv);

/* Update step */
ret = EVP EncryptUpdate (&ctx, out buf, &out len, src, len);

/* Missing final step */

/* Cleanup of cipher context */
EVP CIPHER CTX cleanup (ctx);

Risk

Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you do not perform the final step, leftover data remaining in a partial block is not
encrypted or decrypted. You can face incomplete or unexpected output.

Fix

After your update steps for encryption or decryption, perform a final step to encrypt or
decrypt leftover data.

/* Initialization of cipher context */
ret = EVP EncryptInit ex(&ctx, EVP aes 128 cbc(), NULL, key, iv);

Missing cipher final step

/* Update step(s) */
ret = EVP EncryptUpdate (&ctx, out buf, &out len, src, len);

/* Final step */
ret = EVP EncryptFinal ex(&ctx, out buf, &out len);

/* Cleanup of cipher context */
EVP CIPHER CTX cleanup (ctx);

Examples

Cleanup of Cipher Context Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZEl16 16

unsigned char *out buf;
int out len;

unsigned char key[SIZE16];
unsigned char iv[SIZE1l6];

void func(unsigned char *src, int len) {
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
EVP CIPHER CTX init (ctx);

/* Initialization of cipher context */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, 1iv);

/* Update steps for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);

/* Missing final encryption step */

/* Cleanup of cipher context */
EVP CIPHER CTX cleanup (ctx);

3-345

3 Defects

3-346

In this example, the cipher context ctx is cleaned up before a final encryption step. The

final step is supposed to encrypt leftover data. Without the final step, the encryption is
incomplete.

After your update steps for encryption, perform a final encryption step to encrypt leftover
data. In the corrected code below, the routine EVP_EncryptFinal ex is used to perform
this final step.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out buf;
int out len;

unsigned char key[SIZEl6];
unsigned char iv[SIZEl6];

void func(unsigned char *src, int len) {
EVP_CIPHER CTX *ctx = EVP_CIPHER CTX new();
EVP_CIPHER CTX init(ctx);

/* Initialization of cipher context */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update steps for encryption */
EVP EncryptUpdate (ctx, out buf, &out len, src, len);

/* Final encryption step */
EVP EncryptFinal ex(ctx, out buf, &out len);

/* Cleanup of cipher context */
EVP CIPHER CTX cleanup (ctx);

Result Information
Group: Security
Language: C | C++
Default: Off

Missing cipher final step

Command-Line Syntax: CRYPTO CIPHER NO FINAL

Impact: Medium
CWE ID: 311, 325, 372, 664

Introduced in R2017a

3-347

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

3 Defects

3-348

Missing cipher key

Non-NULL key is not associated with the cipher context for encryption or decryption

Description

Missing cipher key occurs when you encrypt or decrypt data using a NULL encryption
or decryption key.

Note You can initialize your cipher context with a NULL key. However, before you
encrypt or decrypt your data, you must associate the cipher context with a non-NULL
key.

Risk

Encryption or decryption with a NULL key can lead to run-time errors or at least, non-
secure ciphertext.

Fix
Before your encryption or decryption steps

ret = EVP EncryptUpdate (&ctx, out buf, &out len, src, len)
associate your cipher context ctx with a non-NULL key.
ret = EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv)
Sometimes, you initialize your cipher context with a non-NULL key
ret = EVP EncryptInit ex(&ctx, cipher algo 1, NULL, key, iv)

but change the cipher algorithm later. When you change the cipher algorithm, you use a
NULL key.

ret = EVP EncryptInit ex(&ctx, cipher algo 2, NULL, NULL, NULL)

Missing cipher key

The second statement reinitializes the cipher context completely but with a NULL key.
To avoid this issue, every time you initialize a cipher context with an algorithm,
associate it with a key.

Examples

NULL Key Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal error() abort()

unsigned char *out buf;
int out len;

int func(EVP_CIPHER CTX *ctx, unsigned char *iv, unsigned char *src, int len) {
if (iv == NULL)
fatal error();

/* Fourth argument is cipher key */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, NULL, iv);

/* Update step with NULL key */
return EVP EncryptUpdate (ctx, out buf, &out len, src, len);
}

In this example, the cipher key associated with the context ctx is NULL. When you use
this context to encrypt your data, you can encounter run-time errors.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>

#define fatal error() abort()
#define SIZEl16 16

3-349

3 Defects

unsigned char *out buf;
int out len;

int func(EVP_CIPHER CTX *ctx, unsigned char *iv, unsigned char *src, int len) {
if (iv == NULL)
fatal error();
unsigned char key[SIZE16];
RAND bytes (key, 16);

/* Fourth argument is cipher key */
EVP EncryptInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv);

/* Update step with non-NULL cipher key */
return EVP EncryptUpdate (ctx, out buf, &out len, src, len);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER NO KEY

Impact: Medium
CWE 1ID: 310, 320, 573, 664

Introduced in R2017a

3-350

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing explicit keyword

Missing explicit keyword

Constructor missing the explicit specifier

Description

Missing explicit keyword occurs when the declaration of a constructor does not use
the explicit specifier. The explicit specifier prevents implicit conversion from a
variable of another type to the current class type.

The defect applies to:

* One-parameter constructors.

+ Constructors where all but one parameters have default values.

For instance, MyClass: :MyClass (float f, bool b=true) {}.

Risk

If you do not declare a constructor explicit, compilers can perform unexpected and
often unintended type conversions to the class type using the constructor.

The implicit conversion can occur, for instance, when a function accepts a parameter of
the class type, but you call the function with an argument of a different type.

Fix

For better readability of your code and to prevent implicit conversions, in the constructor
declaration, place the explicit keyword before the constructor name.

If you want to convert from a variable of another type, explicitly call the class constructor
and pass the variable as argument.

3-351

3 Defects

3-352

Examples

Missing explicit Keyword

class MyClass {
public:

MyClass (int val);
private:

int wval;

}i
void func (MyClass) ;

void main() {
MyClass MyClassObject (0);

func (MyClassObject) ; // No conversion
func (MyClass (0)) ; // Explicit conversion
func (0) ; // Implicit conversion

}

In this example, the constructor of MyClass is not declared explicit. Therefore, the
call func (0) can perform an implicit conversion from int to MyClass.

One possible correction is to declare the constructor of MyClass as explicit. If an
operation in your code performs an implicit conversion, the compiler generates an error.
Therefore, using the explicit keyword, you detect unintended type conversions in the
compilation stage.

For instance, in function main below, if you add the statement func (0) ; that performs
implicit conversion, the code does not compile.

class MyClass {
public:

explicit MyClass (int wval);
private:

int val;

}s

void func (MyClass) ;

Missing explicit keyword

void main () {
MyClass MyClassObject (0) ;

func (MyClassObject) ; // No conversion
func (MyClass (0)) ; // Explicit conversion

Incorrect Argument Order Preventable Through explicit Keyword

class Month {

int val;

public:
Month (int m): val(m) {}
~Month () {}

b

class Day {
int val;

public:
Day (int d): val(d) {}
~Day () {}

b

class Year {
int val;

public:
Year (int y): val(y) {}
~Year () {}

b

class Date {
Month mm;

Day dd;
Year yyvy;
public:

Date (const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
b

volid main () {

Date (20,1,2000); //Implicit conversion, wrong argument order undetected

}

3-353

3 Defects

3-354

In this example, the constructors for classes Month, Day and Year do not have an
explicit keyword. They allow implicit conversion from int variables to Month, Day
and Year variables.

When you create a Date variable and use an incorrect argument order for the Date
constructor, because of the implicit conversion, your code compiles. You might not detect
that you have switched the month value and the day value.

If you use the explicit keyword for the constructors of classes Month, Day and Year,
you cannot call the Date constructor with an incorrect argument order.

+ If you call the Date constructor with int variables, your code does not compile
because the explicit keyword prevents implicit conversion from int variables.

+ If you call the Date constructor with the arguments explicitly converted to Month,
Day and Year, and have the wrong argument order, your code does not compile
because of the argument type mismatch.

class Month {

int val;

public:
explicit Month(int m): val(m) {}
~Month () {}

b

class Day {
int val;

public:
explicit Day(int d): wval(d) {}
~Day () {}

b

class Year {

int val;

public:
explicit Year(int vy): val(y) {}
~Year () {}

b

class Date {
Month mm;
Day dd;
Year yyvy;

Missing explicit keyword

public:
Date (const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyv(y) {}
b

volid main () {
Date (Month (1) ,Day (20),Year (2000)) ;
// Date(20,1,2000); - Does not compile
// Date (Day(20), Month(l), Year(2000)); - Does not compile

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: MISSING EXPLICIT KEYWORD
Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-355

3 Defects

3-356

Missing lock

Unlock function without lock function

Description

Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my task calls a lock function my lock, other tasks calling
my lock must wait till my task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func (void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Missing lock

void begin critical section(void);
void end critical section(void);

int global var;

void reset (void)

{
begin critical section();
global var = 0;
end critical section();

}

void my task(void)

Missing lock

global var += 1;
end critical section();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Specification

Configure multitasking

manually on page 1-105

Entry points on page 1- my task, reset

112

Critical section details on [Starting routine Ending routine

page 1-124 begin critical section|end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points my task,reset
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

The example has two entry points, my task and reset.my task calls
end critical section before calling begin critical section.

One possible correction is to call the lock function begin critical section before the
instructions in the critical section.

void begin critical section(void);
void end critical section(void);

int global var;
vold reset (void)
{

begin critical section();
global var = 0;

3-357

3 Defects

end critical section();

}

void my task(void)

{
begin critical section();
global var += 1;
end critical section();

Lock in Condition

void begin critical section(void);
void end critical section(void);

int global var;

void reset () {
begin critical section();
global var=0;
end critical section();

void my task(void) {
int index=0;
volatile int numCycles;

while (numCycles) {
if (index%10==0) {
begin critical section();
global var ++;
}

end critical section();
index++;

}

In this example, to emulate multitasking behavior, you must specify the following
options:

3-358

Missing lock

Option Specification

Configure multitasking
manually on page 1-105

Entry points on page 1- my task, reset

112

Critical section details on |[Starting routine Ending routine

page 1-124 begin critical section|end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop

-entry-points my task, reset
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

The example has two entry points, my task and reset.

In the while loop, my task leaves a critical section through the call
end critical section();.In aniteration of the while loop:

If my task enters the if condition branch, the critical section begins through a call to
begin critical section.

If my task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

Ifmy task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end critical section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end critical section.

Check Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: BAD UNLOCK

3-359

3 Defects

3-360

Impact: Medium
CWE ID: 832
CERT C ID: CONO01-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-

exclusions-file)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

https://cwe.mitre.org/data/definitions/832.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Missing null in string array

Missing null in string array

String does not terminate with null character

Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'. This defect can cause various memory errors in
your code, so is important to fix it.

This defect applies only for projects in C.

Examples

Array size is too small

void countdown (int i)

{

static char one[5] = "ONE";
static char two[5] = "TWO";
static char three[5] = "THREE";

}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E"'.
There is no room for the null character at the end because three is only five bytes large.

One possible correction is to change the array size to allow for the five characters plus a
null character.

volid countdown (int 1)

{
static char one[5] = "ONE";
static char two[5] = "TWO";
static char three[6] "THREE";

3-361

3 Defects

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown (int 1)

{

static char one[5] = "ONE";
static char two[5] = "TWO";
static char threel] = "THREE";

Check Information

Group: Programming

Language: C

Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING NULL CHAR
Impact: Low

CWE ID: 170

CERT C ID: ARR33-C, STR11-C, STR31-C

ISO/IEC TS 17961 ID: NONNULLCS, TAINTFORMATIO

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-362

http://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/x/GoEAAQ
https://www.securecoding.cert.org/confluence/x/KAE

Missing reset of a freed pointer

Missing reset of a freed pointer

Pointer free not followed by a reset statement to clear leftover data

Description

Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

* Freeing already freed memory.

* Reading from or writing to already freed memory.

* Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the

pointer to NULL.

Examples

Free Without Reset

#include <stdlib.h>
enum {
SIZE3 = 3,
SIZE20 = 20
b

void missingfreedptrreset ()

{

3-363

3 Defects

static char *str = NULL;

if (str == NULL)
str = (char *)malloc (SIZE20);
if (str != NULL)

free(str);

}

In this example, the pointer str is freed at the end of the program. The next call to

bug missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>

enum {
SIZE3 = 3,
SIZE20 = 20

b

static void sanitize free(void **p)
{
if ((p != NULL) && (*p != NULL))
{
free (*p);
*p = NULL;

}
#define free(X) sanitize free((void **)é&X)
void missingfreedptrreset ()

{
static char *str = NULL;

if (str == NULL)
str = (char *)malloc (SIZE20);
if (str !'= ((void *)0))

{

free(str);

3-364

Missing reset of a freed pointer

Result Information

Group: Good Practice

Language: C | C++

Default: Off

Command-Line Syntax: MISSING FREED PTR RESET

Impact: Low
CWE ID: 415, 416
CERT C ID: MEMO1-C

See Also

Use of previously freed pointer | Invalid free of pointer

Introduced in R2016b

3-365

http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
https://www.securecoding.cert.org/confluence/x/uAE

3 Defects

Missing return statement

Function does not return value though return type is not void

Description

Missing return statement occurs when a function does not return a value along at
least one execution path. If the return type of the function is void, this error does not
occur.

Examples

Missing or invalid return statement error

int AddSquares (int n)
{
int i=0;
int sum=0;

if(n!=0)
{
for (i=1;i<=n;i++)
{
sum+=1i"2;
}
return (sum) ;
}
}

/* Defect: No return value if n is not 0*/
If n is equal to 0, the code does not enter the if statement. Therefore, the function

AddSquares does not return a value if n is 0.

One possible correction is to return a value in every branch of the i f. . .else statement.

int AddSquares (int n)
{

3-366

Missing return statement

int i=0;
int sum=0;

if (n!=0)
{
for (i=1;1i<=n; i++)
{
sum+=1"2;
}

return (sum) ;

}

/*Fix: Place a return statement on branches of if-else */

else
return 0;

Check Information

Group: Data flow

Language: C | C++

Default: On

Command-Line Syntax: MISSING RETURN

Impact: Low
CERT C ID: MSC37-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-367

https://www.securecoding.cert.org/confluence/x/goCGAg

3 Defects

Missing unlock

Lock function without unlock function

Description

Missing unlock occurs when:

* A task calls a lock function.

* The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my task, calls a lock function, my lock, other tasks
calling my lock must wait until my task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func (void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Examples

Missing Unlock

void begin critical section(void);
void end critical section(void);

int global var;

void reset ()

{
begin critical section();
global var = 0;
end critical section();

3-368

Missing unlock

void my task(void)

{

begin critical section();

global var += 1;

In this example, to emulate multitasking behavior, specify the following options:

Option

Value

Configure multitasking
manually on page 1-105

Entry points on page 1-
112

my task, reset

Critical section details on
page 1-124

Starting routine

Ending routine

begin critical section

end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points my task,reset
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

The example has two entry points, my task and reset.my task enters a critical
section through the call begin critical section();.my_ task ends without calling

end critical section.

One possible correction is to call the unlock function end critical section after the
instructions in the critical section.

void begin critical section(void);

void end critical section
int global var;

vold reset (void)

(void) ;

3-369

3 Defects

begin critical section();
global var = 0;
end critical section();

void my task(void)

{
begin critical section();
global var += 1;
end critical section();

Unlock in Condition

void begin critical section(void);
void end critical section(void);

int global var;

void reset () {
begin critical section();
global var=0;
end critical section();

void my task(void) {
int index=0;
volatile int numCycles;

while (numCycles) {
begin critical section();
global var ++;
if (index%10==0) {
global var = 0;
end critical section();
}

index++;

3-370

Missing unlock

In this example, to emulate multitasking behavior, specify the following options.
Option Specification

Configure multitasking
manually on page 1-105

Entry points on page 1- my task, reset

112

Critical section details on |[Starting routine Ending routine

page 1-124 begin critical section|end critical section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
-entry-points my task, reset
-critical-section-begin begin critical section:csl
-critical-section-end end critical section:csl

The example has two entry points, my task and reset.

In the while loop, my task enters a critical section through the call
begin critical section();.In aniteration of the while loop:

* If my task enters the if condition branch, the critical section ends through a call to
end critical section.

* Ifmy task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

* Ifmy task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin critical section iscalled again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin critical section.

One possible correction is to call the unlock function end critical section outside
the if condition.

3-371

3 Defects

void begin critical section(void);
void end critical section(void);

int global var;

vold reset () {
begin critical section();
global var=0;
end critical section();

void my task(void) {
int index=0;
volatile int numCycles;

while (numCycles) {
begin critical section();
global var ++;
1f (index%10==0) {
global var=0;
}
end critical section();
index++;

Another possible correction is to call the unlock function end critical sectionin
every branches of the i f condition.

void begin critical section(void);
void end critical section(void);

int global var;
vold reset () {
begin critical section();

global var=0;
end critical section();

3-372

Missing unlock

void my task(void) {
int index=0;
volatile int numCycles;

while (numCycles) {

begin critical section();
global var ++;
if (index%10==0) {

global var=0;

end critical section();
}
else

end critical section();
index++;

Check Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: BAD LOCK
Impact: High

CWE ID: 667

CERT C ID: MEM12-C

See Also

Polyspace Analysis Options

Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-

exclusions—-file)

Polyspace Results

Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing lock

3-373

https://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/x/8AG7AQ

3 Defects

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3-374

Missing virtual inheritance

Missing virtual inheritance

A base class is inherited virtually and nonvirtually in the same hierarchy

Description

Missing virtual inheritance occurs when:

* A class is derived from multiple base classes, and some of those base classes are
themselves derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate left and
Intermediate right. Both Intermediate left and Intermediate right are
derived from a common class, Base.

+ At least one of the inheritances from the common base class is virtual and at least
one 1s not virtual.

For instance, the inheritance of Intermediate right from Base is virtual. The
inheritance of Intermediate left from Base is not virtual.

Risk

If this defect appears, multiple copies of the base class data members appear in the final
derived class object. To access the correct copy of the base class data member, you have to
qualify the member and method name appropriately in the final derived class. The
development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear
in an object of class Final. If you do not qualify method names appropriately in the class
Final, you can assign a value to a Base data member but not retrieve the same value.

* You assign the value using a Base method accessed through Intermediate left.
Therefore, you assign the value to one copy of the Base member.

* You retrieve the value using a Base method accessed through
Intermediate right. Therefore, you retrieve a different copy of the Base member.

3-375

3 Defects

3-376

Fix
Declare all the intermediate inheritances as virtual when a class is derived from

multiple base classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the
intermediate derived classes, use aggregation instead of inheritance. For instance,
declare two objects of class Intermediate left and Intermediate right inthe
Final class.

Examples

Missing Virtual Inheritance

#include <stdio.h>
class Base {

public:
explicit Base(int 1): m b(i) {};
virtual ~Base () {}:
virtual int get () const {

return m b;
}
virtual void set (int b) {
m b = b;
}
private:
int m b;

b

class Intermediate left: virtual public Base {
public:

Intermediate left () :Base(0), m dl1(0) {};
private:

int m dl;
b

class Intermediate right: public Base ({
public:

Intermediate right () :Base(0), m d2(0) {};
private:

int m d2;

Missing virtual inheritance

b

class Final: public Intermediate left, Intermediate right {

public:
Final(): Base(0), Intermediate left(), Intermediate right() {};
int get () const {

return Intermediate left::get();
}
void set (int b) {
Intermediate right::set(b);
}
int get2() const {
return Intermediate right::get();
}
}i

int main(int argc, char* argv[]) {
Final d;
int val = 12;
d.set (val) ;
int res = d.get();
printf ("d.get=%d\n", res) ; // Result: d.get=0
printf ("d.get2=%d\n",d.get2()); // Result: d.get2=12

return res;

}

In this example, Final is derived from both Intermediate left and

Intermediate right. Intermediate left is derived from Base in a non-virtual
manner and Intermediate right is derived from Base in a virtual manner.
Therefore, two copies of the base class and the data member m b are present in the final
derived class,

Both derived classes Intermediate left and Intermediate right do not override
the Base class methods get and set. However, Final overrides both methods. In the
overridden get method, it calls Base: : get through Intermediate left. In the
overridden set method, it calls Base: : set through Intermediate right.

Following the statement d.set (val), Intermediate right’s copy of m b is set to 12.
However, Intermediate left’s copy of m b is still zero. Therefore, when you call
d.get (), you obtain a value zero.

Using the printf statements, you can see that you retrieve a value that is different from
the value that you set.

3-377

3 Defects

3-378

The defect appears in the final derived class definition and on the name of the class that
are derived virtually from the common base class. Following are some tips for navigating
in the source code:

+ To find the definition of a class, on the Source pane, right-click the class name and
select Go To Definition.

+ To navigate up the class hierarchy, first navigate to the intermediate class definition.
In the intermediate class definition, right-click a base class name and select Go To
Definition.

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base: :get and
Base: :set through different classes, only one copy of m b exists in Final.

#include <stdio.h>
class Base {

public:
explicit Base(int 1): m b(i) {};
virtual ~Base () {}:
virtual int get () const {

return m b;
}
virtual void set (int b) {
m b = b;
}
private:
int m b;

b

class Intermediate left: virtual public Base {
public:

Intermediate left () :Base(0), m dl1(0) {};
private:

int m dl;
b

class Intermediate right: virtual public Base {
public:

Intermediate right () :Base(0), m d2(0) {};
private:

int m d2;

Missing virtual inheritance

b

class Final: public Intermediate left, Intermediate right {

public:
Final(): Base(0), Intermediate left(), Intermediate right() {};
int get () const {

return Intermediate left::get();
}
vold set (int b) {
Intermediate right::set(b);
}
int get2() const {
return Intermediate right::get();

}

int main(int argc, char* argvl[]) {
Final d;
int val = 12;
d.set (val) ;

int res = d.get();
printf ("d.get=%d\n", res) ; // Result: d.get=12
printf ("d.get2=%d\n",d.get2()); // Result: d.get2=12

return res;

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: MISSING VIRTUAL INHERITANCE
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-379

3 Defects

Introduced in R2015b

3-380

Misuse of a FILE object

Misuse of a FILE object

Use of copy of FILE object

Description

Misuse of a FILE object occurs when:

* You dereference a pointer to a FILE object, including indirect dereference by using
memcmp () .

* You modify an entire FILE object or one of its components through its pointer.

* You take the address of FILE object that was not returned from a call to an fopen-
family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (& stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong

stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was
not returned from a successful call to an fopen-family function.

Examples
Copy of FILE Object Used in fputs ()

#include <stdio.h>
#include <unistd.h>

3-381

3 Defects

3-382

#include <stdlib.h>
#include <string.h>
#include <strings.h>

int func(void)
{
/*'stdout' dereferenced and contents
copied to 'my stdout'. */
FILE my stdout = *stdout;

/* Address of 'my stdout' may not point to correct stream. */
if (fputs("Hello, World!\n", &my stdout) == EOF)
{
/* Handler error */
fatal error();
}

return 0;

In this example, FILE object stdout is dereferenced and its contents are copied to

my stdout. The contents of stdout might not be significant. fputs () is then called
with the address of my stdout as an argument. Because no call to fopen () or a similar
function was made, the address of my stdout might not point to the correct stream.

Declare my stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs ().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

int func(void)
{
/* 'my stdout' and 'stdout' point to the same object. */
FILE *my stdout = stdout;
if (fputs("Hello, World!\n", my stdout) == EOF)
{
/* Handler error */
fatal error();

Misuse of a FILE object

}

return 0;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: FILE OBJECT MISUSE

Impact: Low
CERT C ID: FIO38-C
ISO/TEC TS 17961 ID: filecpy

See Also

Introduced in R2017b

3-383

https://www.securecoding.cert.org/confluence/x/wAw

3 Defects

3-384

Misuse of structure with flexible array member

Memory allocation ignores flexible array member

Description

Misuse of structure with flexible array member occurs when:

You define an object with a flexible array member of unknown size at compilation
time.

You make an assignment between structures with a flexible array member without
using memcpy () or a similar function.

You use a structure with a flexible array member as an argument to a function and
pass the argument by value.

Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure
with at least two named members.

Risk

If the size of the flexible array member is not defined, it is ignored when allocating
memory for the containing structure. Accessing such a structure has undefined behavior.

Fix

Usemalloc () or a similar function to allocate memory for a structure with a flexible
array member.

Use memcpy () or a similar function to copy a structure with a flexible array member.

Pass a structure with a flexible array member as a function argument by pointer.

Misuse of structure with flexible array member

Examples

Structure Passed By Value to Function

#include
#include
#include
#include
#include

<stddef.h>
<stdlib.h>
<string.h>
<stdio.h>

<unistd.h>

struct example struct

{

size

t num;

int datal];

b

extern void arg by value(struct example struct s);

void func (void)

{

struct example struct *flex struct;

size t iy

size t array size = 4;

/* Dynamically allocate memory for the struct */
flex struct = (struct example struct *)

malloc (sizeof (struct example struct) + sizeof (int) * array size);

if (flex struct == NULL)

{

}

/* Handle error */

/* Initialize structure */
flex struct->num = array size;

for

{

}

(i = 0; 1 < array size; ++i)

flex struct->datal[i] = 0;

/* Handle structure */

/* Argument passed by value. 'data' not
copied to passed value. */
arg by value(*flex struct);

3-385

3 Defects

3-386

/* Free dynamically allocated memory */
free (flex struct);

In this example, flex struct is passed by value as an argument to arg by value. As
a result, the flexible array member data is not copied to the passed argument.

To ensure that all the members of the structure are copied to the passed argument, pass
flex struct toarg by pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example struct

{

size t num;
int datall;
b

extern void arg by pointer (struct example struct *s);

void func (void)

{
struct example struct *flex struct;
size t iy

size t array size = 4;
/* Dynamically allocate memory for the struct */
flex struct = (struct example struct *)
malloc (sizeof (struct example struct) + sizeof(int) * array size);
if (flex struct == NULL)

{
/* Handler error */
}
/* Initialize structure */
flex struct->num = array size;
for (i = 0; i < array size; ++1i)

{

Misuse of structure with flexible array member

flex struct->datal[i] = 0;
}

/* Handle structure */

/* Structure passed by pointer */
arg by pointer (flex struct);

/* Free dynamically allocated memory */
free (flex struct);

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: FLEXIBLE ARRAY MEMBER STRUCT MISUSE

Impact: Low
CERT C ID: MEM33-C

See Also

Introduced in R2017b

3-387

https://www.securecoding.cert.org/confluence/x/6AAl

3 Defects

Misuse of errno

errno incorrectly checked for error conditions

Description

Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking errno
can lead to false positives.

For instance, you check errno following calls to the functions:

+ fopen: If you follow the ISO Standard, the function might not set errno on errors.
+ atof: If you follow the ISO Standard, the function does not set errno.

* signal: The errno value indicates an error only if the function returns the SIG_ERR
error indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix
For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

3-388

Misuse of errno

* fopen returns a null pointer if an error occurs.

* signal returns the SIG ERR error indicator and sets errno to a positive value.
Check errno only after you have checked the function return value.

Examples

Incorrectly Checking for errno After fopen Call
#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define fatal error() abort()

const char *temp filename = "/tmp/demo.txt";

FILE *func()

{
FILE *fileptr;

errno = 0;
fileptr = fopen(temp filename, "w+b");
if (errno != 0) {

(void) fclose (fileptr);
}
/* Handle error */
fatal error();

}

return fileptr;

}

if (fileptr != NULL) {

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might
miss an error condition. In this situation, fopen can return a null pointer that escapes

detection.

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>

3-389

3 Defects

#include <errno.h>
#define fatal error() abort()
const char *temp filename = "/tmp/demo.txt";

FILE *func ()
{
FILE *fileptr;
fileptr = fopen(temp filename, "w+b");
if (fileptr == NULL) {
fatal error();

}

return fileptr;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: ERRNO MISUSE
Impact: High

CWE ID: 703

CERT C ID: ERR30-C

ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive

function not checked | Unsafe conversion from string to numerical
value

Introduced in R2017a

3-390

https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl

Misuse of readlink()

Misuse of readlink()

Third argument of readlink does not leave space for null terminator in buffer

Description

Misuse of readlink() occurs when you pass a buffer size argument to readlink () that
does not leave space for a null terminator in the buffer.

For instance:
ssize t len = readlink("/usr/bin/perl", buf, sizeof (buf));

The third argument is exactly equal to the size of the second argument. For large enough
symbolic links, this use of readlink () does not leave space to enter a null terminator.

Risk

The readlink () function copies the content of a symbolic link (first argument) to a
buffer (second argument). However, the function does not append a null terminator to
the copied content. After using readlink (), you must explicitly add a null terminator to
the buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null
terminator.

Fix

When using the readlink () function, make sure that the third argument is one less
than the buffer size.

Then, append a null terminator to the buffer. To determine where to add the null
terminator, check the return value of readlink (). If the return value is -1, an error has
occurred. Otherwise, the return value is the number of characters (bytes) copied.

3-391

3 Defects

3-392

Examples

Incorrect Size Argument of readlink
#include <unistd.h>

#define SIZE1024 1024

extern void display path (const char *);

void func() {
char buf[SIZE1024];

ssize t len = readlink("/usr/bin/perl", buf, sizeof (buf)):;
if (len > 0) {
buf[len - 1] = "\0';

}
display path (buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second

argument). If the first argument is long enough, this use of readlink does not leave
space for the null terminator.

Also, if no characters are copied, the return value of readlink is 0. The following
statement leads to a buffer underflow when len is 0.

buf[len - 1] = '"\0';

One possible correction is to make sure that the third argument of readlink is one less

than size of the second argument.
The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal error() abort()
#define SIZE1024 1024

extern void display path(const char *);

void func () {

Misuse of readlink()

char buf[SIZE1024];

ssize t len = readlink("/usr/bin/perl"™, buf,

if (len !'= -1) {
buf[len] = '"\0';
display path (buf);

}

else {
/* Handle error */
fatal error();

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: READLINK MISUSE

Impact: Medium
CWE ID: 170
CERT C ID: POS30-C

See Also

Polyspace Results

sizeof (buf)

1);

Array access out of bounds | File access between time of check and use
(TOCTOU) | Invalid use of standard library string routine | Pointer

access out of bounds | Returned value of a sensitive function not

checked

Introduced in R2017a

3-393

https://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/display/c/POS30-C.+Use+the+readlink()+function+properly

3 Defects

3-394

Misuse of return value from nonreentrant standard
function

Pointer to static buffer from previous call is used despite a subsequent call that modifies
the buffer

Description

Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv ("USER");
2 You call that nonreentrant standard function again.

user?2 = getenv ("USER2");

3 You use or dereference the pointer from the first step expecting the buffer to remain
unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:
var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

char* func() {
user=getenv ("USER") ;

return user;

}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

Misuse of return value from nonreentrant standard function

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first
call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.
Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Examples

Return from getenv Used After Second Call to getenv

#include <stdlib.h>
#include <string.h>

int func()
{
int result = 0;
char *home = getenv ("HOME") ; /* First call */
if (home != NULL) {
char *user = NULL;
char *user name from home = strrchr(home, '/');
if (user name from home != NULL) {

user = getenv ("USER") ; /* Second call */

3-395

3 Defects

3-396

if ((user != NULL) &&

(strcmp (user, user name from home) == 0))
{

result = 1;

}

return result;

}

In this example, the pointer user name from home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user name from home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user name from home, you can get unexpected results.

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func ()
{

int result = 0;

char *home = getenv ("HOME") ;

if (home != NULL) {
char *user = NULL;
char *user name from home = strrchr(home, '/');
if (user name from home != NULL) ({
/* Make copy before second call */
char *saved user name from home = strdup(user name from home) ;
if (saved user name from home != NULL) {
user = getenv ("USER");
if ((user != NULL) &&
(strcmp (user, saved user name from home) == 0))
{
result = 1;

}

free (saved user name from home) ;

Misuse of return value from nonreentrant standard function

}
}

return result;

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: NON REENTRANT STD RETURN
Impact: High

CERT C ID: ENV34-C

ISO/IEC TS 17961 ID: 1ibuse

See Also

Polyspace Results
Modification of internal buffer returned from nonreentrant standard

function | Use of obsolete standard function

Introduced in R2017a

3-397

https://www.securecoding.cert.org/confluence/x/GAAa

3 Defects

3-398

Misuse of sign-extended character value

Data type conversion with sign extension causes unexpected behavior

Description

Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. Then you use the
resulting sign-extended value as array index or for comparison with EOF.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as
signed. On this implementation, the character with the decimal form of 255 (-1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer —1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, sign-extended plain char variables cannot be
used as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Fix

Cast the signed or plain char value explicitly to unsigned char before conversion to a
wider integer data type.

Examples

Sign-extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal error() abort()

Misuse of sign-extended character value

extern char parsed token buffer[20];

static int parser (char *buf)
{
int ¢ = EOF;
if (buf && *buf) {
c = *buf++;
}

return c;

void func ()
{
if (parser (parsed token buffer) == EOF) ({
/* Handle error */
fatal error();

}

In this example, the function parser can traverse a string input buf. If a character in
the string has the decimal form 255, when converted to the int variable c, its value
becomes —1, which is indistinguishable from EOF. The later comparison with EOF can
lead to a false positive.

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal error() abort()

extern char parsed token buffer[20];

static int parser (char *buf)
{
int ¢ = EOF;
if (buf && *buf) {
c = (unsigned char) *buf++;
}

return c;

3-399

3 Defects

void func ()
{
if (parser (parsed token buffer) == EOF) {
/* Handle error */
fatal error();

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: CHARACTER MISUSE
Impact: Medium

CWE ID: 704

CERT C ID: STR34-C

ISO/IEC TS 17961 ID: signconv

See Also
Polyspace Results
Character value absorbed into EOF | Errno not checked | Invalid use of

standard library integer routine | Returned value of a sensitive
function not checked

Introduced in R2017a

3-400

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/QgBi

Modification of internal buffer returned from nonreentrant standard function

Modification of internal buffer returned from
nonreentrant standard function

Function attempts to modify internal buffer returned from a nonreentrant standard
function

Description

Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:
* A nonreentrant standard function returns a pointer.

* You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an
internal buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror
and others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause
the following issues:

+ It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you
modify this value, you alter the environment of the process and corrupt other internal
data.

+ Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

3-401

3 Defects

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Examples

Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

void printstr (const char*);

void func () {
char* env = getenv ("LANGUAGE") ;
if (env != NULL) {
strncpy(env, "C", 1);

printstr (env) ;

}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because st rncpy modifies
this argument.

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {

SIZE20 = 20
b

void printstr(const char*);

void func () {
char* env = getenv ("LANGUAGE") ;
if (env != NULL) {

char env cp[SIZE20];

3-402

Modification of internal buffer returned from nonreentrant standard function

strncpy (env_cp, env, SIZE20);
strncpy (env_cp, "C", 1);
printstr (env_cp);

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: WRITE INTERNAL BUFFER RETURNED FROM STD FUNC
Impact: Low

CWE ID: 573, 628

CERT C ID: ENV30-C, STR06-C

ISO/IEC TS 17961 ID: 1ibmod

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

Introduced in R2015b

3-403

http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/XgAl
https://www.securecoding.cert.org/confluence/x/owAV

3 Defects

3-404

Non-initialized pointer

Pointer not initialized before dereference

Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Examples

Non-initialized pointer error
#include <stdlib.h>

int* assign pointer (int* prev)

{

int § = 42;
int* pi;
if (prev == NULL)
{
pi = (int*)malloc(sizeof (int));
if (pi == NULL) return NULL;
}
*pl o= 35

/* Defect: Writing to uninitialized pointer */

return pi;

}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

One possible correction is to assign an address to pi when prev is not NULL.

Non-initialized pointer

#include <stdlib.h>

int* assign pointer (int* prev)

{

int j = 42;

int* pi;

if (prev == NULL)
{
pi = (int*)malloc(sizeof (int));
if (pi == NULL) return NULL;

}
/* Fix: Initialize pi in branches of if statement
else

pi = prev;

return pi;

Check Information

Group: Data flow

Language: C | C++

Default: On

Command-Line Syntax: NON INIT PTR
Impact: High

CWE 1ID: 456, 457, 824, 908

CERT C ID: EXP33-C, MEMO09-C, MSC15-C
ISO/TIEC TS 17961 ID: uninitref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized variable

*/

3-405

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu

3 Defects

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-406

Non-initialized variable

Non-initialized variable

Variable not initialized before use

Description

Non-initialized variable occurs when a variable is not initialized before its value is
read.

Examples

Non-initialized variable error

int get sensor value (void)

{

}

extern int getsensor (void);
int command;
int val;

command = getsensor();
if (command == 2)
{

val = getsensor();

}

return val;

/* Defect: val does not have a value if command is not 2 */

If command is not 2, the variable val is unassigned. In this case, the return value of

function get sensor value is undetermined.

One possible correction is to initialize val during declaration so that the initialization is

not bypassed on some execution paths.

int get sensor value (void)

{

3-407

3 Defects

extern int getsensor (void);
int command;

/* Fix: Initialize val */
int val=0;

command = getsensor();
if (command == 2)
{

val = getsensor();

}

return val;

}

val is assigned an initial value of 0. When command is not equal to 2, the function
get sensor value returns this value.

Check Information

Group: Data flow

Language: C | C++

Default: On

Command-Line Syntax: NON_INIT VAR

Impact: High

CWE 1ID: 456, 457, 908

CERT C ID: EXP33-C, MEMO09-C, MSC15-C, MSC39-C
ISO/TIEC TS 17961 ID: uninitref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized pointer

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

3-408

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/VwCMAg

Non-initialized variable

Introduced in R2013b

3-409

3 Defects

Null pointer

NULL pointer dereferenced

Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Examples

Null pointer error

#include <stdlib.h>

int FindMax (int *arr, int Size)
{
int* p=NULL;

*p=arr[0];
/* Defect: Null pointer dereference */

for(int 1=0;1<Size;i++)
{
if(arxr[i] > (*p))
*p=arr[i];

}

return *p;

}

The pointer p is initialized with value of NULL. However, when the value arr [0] is
written to *p, p is assumed to point to a valid memory location.

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

3-410

Null pointer

int FindMax (int *arr, int Size)

{

/* Fix: Assign address to null pointer */
int* p=&arr[0];

for (int 1=0;1i<Size;i++)
{
if(arr[i] > (*p))
*p=arr[i];

}

return *p;

}

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: NULL PTR
Impact: High

CWE ID: 476

CERT C ID: EXP34-C, MSC15-C
ISO/IEC TS 17961 ID: nullref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Arithmetic operation with NULL pointer | Non-initialized pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-411

http://cwe.mitre.org/data/definitions/476.html
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu

3 Defects

3-412

Object slicing

Derived class object passed by value to function with base class parameter

Description

Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.

2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual method
can be called. For instance, the base class contains a virtual method and the derived
class contains an implementation of that method. When you call the virtual method
from the function body, the base class method is called, even though you pass a derived
class object to the function.

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

Object slicing

Examples

Function Call Causing Object Slicing

#include <iostream>

class Base {

public:

explicit Base(int b) {

b =Db;

}

virtual ~Base () {}

virtual int update() const;
protected:

int b;

b

class Derived: public Base {

public:
explicit Derived(int b) :Base (b)
int update() const;

b
//Class methods definition
int Base::update() const {

return (b + 1);

int Derived::update () const {
return (_b -1);

//Other function definitions

{1

void funcPassByValue (const Base bObj) {
std::cout << "Updated b=" << bObj.update() << std::endl;

}

int main() {
Derived dObj (0) ;

funcPassByValue (dObj) ; //Function call slices object

3-413

3 Defects

3-414

return 0;

}

In this example, the call funcPassByValue (dObj) results in the output Updated b=1
instead of the expected Updated b=-1.Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

Therefore, even though you pass the Derived object dOb, the function
funcPassByValue treats its parameter b as a Base object. It calls Base: :update ()
instead of Derived: :update ().

One possible correction is to pass the Derived object dObj by reference or by pointer. In
the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference (dObj) and funcPassByPointer (&d0bj) produce the
expected result Updated Db=-1.

#include <iostream>

class Base {

public:

explicit Base(int b) {

b = Db;

}

virtual ~Base () {}

virtual int update() const;
protected:

int by

b

class Derived: public Base {

public:
explicit Derived(int b) :Base(b) {}
int update() const;

b

//Class methods definition

Object slicing

int Base::update() const {
return (b + 1);

int Derived::update () const {
return (_b -1);

//Other function definitions
void funcPassByReference (const Base& bRef) {

std::cout << "Updated b=" << bRef.update() << std::endl;
}

void funcPassByPointer (const Base* bPtr) {
std::cout << "Updated b=" << bPtr->update() << std::endl;
}

int main() {
Derived dObj (0) ;
funcPassByReference (dOb7j) ; //Function call does not slice object
funcPassByPointer (&dOb7j) ; //Function call does not slice object
return O;

Note If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: OBJECT SLICING
Impact: High

3-415

3 Defects

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”

Introduced in R2015b

3-416

Opening previously opened resource

Opening previously opened resource

Opening an already opened file

Description

Opening previously opened resource checks for file opening functions that are

opening an already opened file.

Risk
If you open a resource multiple times, you can encounter:

* A race condition when accessing the file.
* Undefined or unexpected behavior for that file.

+ Portability issues when you run your program on different targets.
Fix

Once a resource is open, close the resource before reopening.

Examples

File Reopened With New Permissions

#include <stdio.h>
const char* logfile = "my file.log";

void doubleresourceopen ()
{
FILE* fpa = fopen(logfile, "w");
if (fpa == NULL) {
return;
}
(void) fprintf (fpa, "Writing");

3-417

3 Defects

FILE* fpb = fopen(logfile, "r");
(void) fclose (fpa) ;
(void) fclose (fpb) ;

}

In this example, a 1ogfile is opened in the first line of this function with write
privileges. Halfway through the function, the 1ogfile is opened again with read
privileges.

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>
const char* logfile = "my file.log";

void doubleresourceopen ()
{
FILE* fpa = fopen(logfile, "w");
if (fpa == NULL) {
return;
}
(void) fprintf (fpa, "Writing");
(void) fclose (fpa);
FILE* fpb = fopen(logfile, "r");
(void) fclose (fpb) ;

Result Information

Group: Resources

Language: C | C++

Default: On

Command-Line Syntax: DOUBLE RESOURCE OPEN
Impact: Medium

CWE ID: 362, 675

CERT C ID: FI024-C, FIO31-C

Introduced in R2016b

3-418

http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/675.html
https://www.securecoding.cert.org/confluence/x/pwA1

Overlapping assignment

Overlapping assignment

Memory overlap between left and right sides of an assignment

Description

Overlapping assignment occurs when there is a memory overlap between the left and
right sides of an assignment. For instance, a variable is assigned to itself or one member
of a union is assigned to another.

Risk

If the left and right sides of an assignment have memory overlap, the behavior is either
redundant or undefined. For instance:

+ Self-assignment such as x=(int) (long) x; is redundant unless x is volatile-
qualified.

+ Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

* The result of the assignment ul.a = ul.b is undefined because ul.b is not
initialized.

* The result of the assignment u2.b = u2.a depends on the alignment and
endianness of the implementation. It is not defined by C standards.

union {
char a;
int b;
Jul={'a'}, u2={'a'}; //'ul.a' and 'u2.a' are initialized

ul.a = ul.b;
u2.b = u2.a;

Fix

Avoid assignment between two variables that have overlapping memory.

3-419

3 Defects

Examples

Assignment of Union Members
#include <string.h>

union Data {
int i;
float f;
i

int main() {
union Data data;
data.i = 0;
data.f = data.i;

return 0;

}

In this example, the variables data.i and data. f are part of the same union and are
stored in the same location. Therefore, part of their memory storage overlaps.

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: OVERLAPPING ASSIGN

Impact: Low
CWE ID: 665
CERT C ID: MSC15-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy of overlapping memory

3-420

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/EoLu

Overlapping assignment

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-421

3 Defects

Partial override of overloaded virtual functions

Class overrides fraction of inherited virtual functions with a given name

Description

Partial override of overloaded virtual functions occurs when:

* A base class has multiple virtual methods with the same name but different
signatures (overloading).

+ A class derived from the base class overrides at least one of those virtual methods,
but not all of them.

Risk

The virtual methods that the derived class does not override are hidden. You cannot
call those methods using an object of the derived class.

Fix
See if the overloads in the base class are required. If they are needed, possible solutions
include:

* In your derived class, if you override one virtual method, override all virtual
methods from the base class with the same name as that method.

* Otherwise, add the line using Base class name::method name to the derived
class declaration. In this way, you can call the base class methods using an object of
the derived class.

Examples
Partial Override

class Base {
public:

3-422

Partial override of overloaded virtual functions

explicit Base (int Db);

virtual ~Base () {}:

virtual void set () {
b = (int)O0;

b

virtual void set (short 1) {
b = (int)i;

b

virtual void set(int 1) {
b = (int)i;

b

virtual void set(long 1) {
b = (int)i;

b

virtual void set(float 1) {
b = (int)i;

b

virtual void set (double 1) {

b = (int)i;
}i
private:
int by
}i

class Derived: public Base {

public:

Derived(int b, int d): Base(b), _d(d) {};

void set (int 1) { Base::set(i); d = (int)i; };
private:

int d;

}s

In this example, the class Derived overrides the function set that takes an int
argument. It does not override other functions that have the same name set but take
arguments of other types.

The defect appears on the derived class name in the derived class definition. To find
which base class method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the method that has the same name and
signature as a derived class method name.

3-423

3 Defects

One possible correction is add the line using Base: :set to the Derived class
declaration.

class Base {

public:

explicit Base (int Db);

virtual ~Base() {};

virtual void set () {
b = (int)O0;

b

virtual void set (short 1) {
b = (int)i;

b

virtual void set (int 1) {
b = (int)i;

b

virtual void set(long 1) {
b = (int)i;

b

virtual void set(float 1) {
b = (int)i;

b

virtual void set (double 1) {
b = (int)i;

b

private:
int Dby

b

class Derived: public Base {

public:

Derived(int b, int d): Base(b), _d(d) {};

using Base::set;

void set (int 1) { Base::set(i); _d = (int)i; };
private:

int d;

b

Result Information

Group: Object oriented
Language: C++

3-424

Partial override of overloaded virtual functions

Default: On
Command-Line Syntax: PARTIAL OVERRIDE
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-425

3 Defects

Partially accessed array

Array partly read or written before end of scope

Description

Partially accessed array occurs when an array is partially read or written before the
end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Examples
Partially accessed array error

int Calc_Sum(void)

{

int tab[5]1={0,1,2,3,4},sum=0;

/* Defect: tab[4] is not read */

for (int i=0; i<4;i++) sum+=tabl[i];

return (sum) ;

}
The array tab is only partially read before end of function Calc Sum. While calculating
sum, tab[4] is not included.

One possible correction is to read every element in the array tab.

int Calc_ Sum(void)
{
int tab[5]={0,1,2,3,4},sum=0;

/* Fix: Include tab[4] in calculating sum */

3-426

Partially accessed array

for (int i=0; 1<5;1i++) sum+=tab[i]:;

return (sum) ;

Check Information

Group: Data flow

Language: C | C++

Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTTALLY ACCESSED ARRAY

Impact: Low

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-427

3 Defects

3-428

Pointer access out of bounds

Pointer dereferenced outside its bounds

Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its
bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Examples

Pointer access out of bounds error

int* Initialize (void)
{

int arr[10];

int *ptr=arr;

for (int i=0; 1<=9;i++)
{
ptr++;
*ptr=i;
/* Defect: ptr out of bounds for i=9 */
}

return (arr) ;

}

ptr is assigned the address arr that points to a memory block of size 10*sizeof (int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

One possible correction is to reverse the order of increment and dereference of ptr.

Pointer access out of bounds

int* Initialize (void)
{

int arr([10];

int *ptr=arr;

for (int i=0; 1<=9;i++)
{

/* Fix: Dereference pointer before increment */
*ptr=i;

ptr++;

}

return (arr) ;

}

After the last increment, even though ptr points outside the memory block assigned to
it, it is not dereferenced more.

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: OUT BOUND PTR

Impact: High

CWE ID: 119, 188, 466, 823

CERT C ID: API02-C, ARR30-C, ARR38-C, ARR39-C, EXP08-C, EXP39-C, MEM35-C,
MSC15-CSTR31-C

ISO/IEC TS 17961 ID: ptrcomp, insufmem, invptr, taintformatio

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Array access out of bounds

Topics
“Navigate to Root Cause of Defect”

3-429

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/-QFqAQ
https://www.securecoding.cert.org/confluence/x/2wE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE

3 Defects

“Review and Fix Results”

Introduced in R2013b

3-430

Pointer dereference with tainted offset

Pointer dereference with tainted offset

Offset is from an unsecure source and dereference may be out of bounds

Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

* Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
* Buffer overflow, or writing to memory after the end of a buffer.
* Over reading a buffer, or accessing memory after the end of the targeted buffer.

* Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.
Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Examples

Dereference Pointer Array

#include <stdlib.h>

3-431

3 Defects

3-432

enum {
SIZE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b

extern void read pint (int*);

int taintedptroffset (int i) {
int* pint = (int*)calloc(SIZE10, sizeof(int));
int ¢ = 0;
if (pint) {
/* Filling array */
read pint (pint);
c = pint[i];
free (pint);
}

return c;

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

One possible correction is to validate the value of the index. If the index is inside the
valid range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
SIZzE10 = 10,
SIZE100 = 100,

SIZE128 = 128
b

extern void read pint (int*);

int taintedptroffset (int i) {

int* pint = (int*)calloc(SIZE10, sizeof(int));
int ¢ = 0;
if (pint) {

/* Filling array */

read pint (pint);

if (i>0 && 1<SIZE10) {

c = pint[i];

Pointer dereference with tainted offset

}
free (pint);
}

return c;

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED PTR _OFFSET
Impact: Low

CWE ID: 122, 124, 129, 823

CERT C ID: API00-C, AP102-C, ARR30-C
ISO/IEC TS 17961 ID: invptr

See Also

Array access with tainted index | Use of tainted pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-433

http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg

3 Defects

3-434

Pointer or reference to stack variable leaving scope

Pointer to local variable leaves the variable scope

Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

+ A function returns a pointer to a local variable.

* A function performs the assignment globPtr = &locVar. globPtr is a global
pointer variable and locVar is a local variable.

* A function performs the assignment *paramPtr = &locVar. paramPtr is a function
parameter that is, for instance, an int** pointer and locVar is a local int variable.

* A C++ method performs the assignment memPtr = &locVar.memPtr is a pointer
data member of the class the method belongs to. LocVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Pointer or reference to stack variable leaving scope

Examples

Pointer to Local Variable Returned from Function

void func?2 (int *ptr) {
*ptr = 0;
}

int* funcl (void) {
int ret = 0;
return é&ret ;
}
void main (void) {
int* ptr = funcl() ;
func2 (ptr) ;
}

In this example, funcl returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to funcl,

Result Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: LOCAL ADDR ESCAPE
Impact: High

CWE ID: 562

CERT C ID: DCL30-C

ISO/IEC TS 17961 ID: addrescape

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”

3-435

http://cwe.mitre.org/data/definitions/562.html
https://www.securecoding.cert.org/confluence/x/bQ4

3 Defects

“Review and Fix Results”

Introduced in R2015b

3-436

Pointer to non-initialized value converted to const pointer

Pointer to non-initialized value converted to const
pointer

Pointer to constant assigned address that does not contain a value

Description

Pointer to non initialized value converted to const pointer occurs when a pointer
to a constant is assigned an address that does not yet contain a value.

Examples

Pointer to non initialized value converted to const pointer error
#include<stdio.h>

void Display Parity ()

{

int num,parity;

const int* num ptr = #

/* Defect: Address &num does not store a value */

printf ("Enter a number\n:");
scanf ("%d", &num) ;

parity=((*num ptr)%2);
if (parity==0)

printf ("The number is even.");
else

printf ("The number is odd.");

num ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

3-437

3 Defects

One possible correction is to obtain the value of num from the user before &num is
assigned to num ptr.

#include<stdio.h>

void Display Parity()
{
int num,parity;
const int* num ptr;

printf ("Enter a number\n:");
scanf ("%d", &num) ;

/* Fix: Assign &num to pointer after it receives a value */
num_ptr=#
parity=((*num ptr)3%2);
if (parity==0)
printf ("The number is even.");
else
printf ("The number is odd.");

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num ptr.

Check Information

Group: Data flow

Language: C | C++

Default: Off

Command-Line Syntax: NON INIT PTR CONV

Impact: Medium
ISO/IEC TS 17961 ID: uninitref

See Also

Find defects (-checkers)

3-438

Pointer to non-initialized value converted to const pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3-439

3 Defects

3-440

Possible misuse of sizeof

Use of sizeof operator can cause unintended results

Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

Risk

You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

The size argument of certain functions such as strncmp or wesncpy 1s incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

In a function call strnecmp (stringl, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

In a function call wesncpy (destination, source, num), numis the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy (destination, source,

sizeof (destination) - 1) instead of wesncpy (destination, source,
(sizeof (desintation) /sizeof (wchar t)) - 1).

Incorrect use of the sizeof operator can cause the following issues:

If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

If you use the return value of sizeof operator to allocate a buffer, the buffer size is

smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

Possible misuse of sizeof

+ If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix
Possible fixes are:

* Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

* Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wesncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Examples

sizeof Used Incorrectly to Determine Array Size
#define MAX SIZE 1024

void func(int a[MAX SIZE]) {
int i;

= 0; 1 < sizeof(a)/sizeof (int); 1i++) {
il = 1 + 1;

In this example, sizeof (a) returns the size of the pointer a and not the array size.

One possible correction is to use another means to determine the array size.

#define MAX SIZE 1024

void func(int a[MAX SIZE]) {
int i;

3-441

3 Defects

3-442

= 0; i < MAX SIZE; i++) {
il =1+ 1;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: SIZEOF MISUSE

Impact: High

CWE ID: 467

CERT C ID: ARR00-C, ARR01-C, ARR38-C, ARR39-C, EXP01-C
ISO/TIEC TS 17961 ID: 1ibptr, insufmem, sizeofptr

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites

Linux man page for strncmp
Linux man page for wesnepy

Introduced in R2015b

http://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://man7.org/linux/man-pages/man3/strcmp.3.html

Possibly unintended evaluation of expression because of operator precedence rules

Possibly unintended evaluation of expression
because of operator precedence rules

Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description

Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op 1 y op 2 z.Here, op 1-op 2 are
operator combinations that commonly induce this error. For instance, (x == y | z).

Risk
The defect can cause the following issues:

+ If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.
+ It is possible that the result of the evaluation does not meet your expectations. For
instance:
* In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

In the operation (x == y | z), it is possible that you expect x to be compared
with vy | z. However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

3-443

3 Defects

Examples

Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
return(a & b == c¢);

}

In this example, the == operation happens first, followed by the s operation. If you
intended the reverse order of operations, the result is not what you expect.

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
return((a & b) == c);

}

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: OPERATOR PRECEDENCE
Impact: High

CWE ID: 783

CERT C ID: EXP00-C, EXP13-C

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect
“Review and Fix Results”

”»

External Websites
C++ Operator Precedence

3-444

http://cwe.mitre.org/data/definitions/783.html
https://www.securecoding.cert.org/confluence/x/_wI
https://www.securecoding.cert.org/confluence/x/LoFCAQ
http://en.cppreference.com/w/cpp/language/operator_precedence

Possibly unintended evaluation of expression because of operator precedence rules

Introduced in R2015b

3-445

3 Defects

3-446

Predictable block cipher initialization vector

Initialization vector is generated from a weak random number generator

Description

Predictable block cipher initialization vector occurs when you use a weak random
number generator for the block cipher initialization vector.

Risk

If you use a weak random number generator for the initiation vector, your data is
vulnerable to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a weak random number generator for your
IV, your data becomes vulnerable to dictionary attacks.

Fix
Use a strong pseudo-random number generator (PRNG) for the initialization vector. For

instance, use:

+ 0OS-level PRNG such as /dev/random on UNIX or CryptGenRandom () on Windows
+ Application-level PRNG such as Advanced Encryption Standard (AES) in Counter
(CTR) mode, HMAC-SHAL, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Predictable block cipher initialization vector

Examples

Predictable Initialization Vector

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZEl6 16

int func(EVP_CIPHER CTX *ctx, unsigned char *key) {
unsigned char iv[SIZEl6];
RAND pseudo bytes (iv, 16);
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

In this example, the function RAND pseudo bytes declared in openssl/rand.h
produces the initialization vector. The byte sequences that RAND pseudo_bytes
generates are not necessarily unpredictable.

Use a strong random number generator to produce the initialization vector. The
corrected code here uses the function RAND bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZEl16 16

int func(EVP_CIPHER CTX *ctx, unsigned char *key) {
unsigned char iv[SIZE1l6];
RAND bytes(iv, 16);
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

Result Information

Group: Security
Language: C | C++
Default: Off

3-447

3 Defects

Command-Line Syntax: CRYPTO CIPHER PREDICTABLE IV

Impact: Medium
CWE ID: 310, 329, 330, 338
CERT C ID: MSC18-C

Introduced in R2017a

3-448

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Predictable cipher key

Predictable cipher key

Encryption or decryption key is generated from a weak random number generator

Description

Predictable cipher key occurs when you use a weak random number generator for the
encryption or decryption key.

Risk

If you use a weak random number generator for the encryption or decryption key, an
attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Use a strong pseudo-random number generator (PRNG) for the key. For instance:

+ Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom () on
Windows

* Use an application-level PRNG such as Advanced Encryption Standard (AES) in
Counter (CTR) mode, HMAC-SHALI, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Predictable Cipher Key

3-449

3 Defects

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER CTX *ctx, unsigned char *iv) {

unsigned char key[SIZEl6];

RAND pseudo bytes (key, 16);

return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);
}

In this example, the function RAND pseudo bytes declared in openssl/rand.h
produces the cipher key. However, the byte sequences that RAND pseudo bytes
generates are not necessarily unpredictable.

One possible correction is to use a strong random number generator to produce the cipher
key. The corrected code here uses the function RAND bytes declared in openssl/
rand. h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER CTX *ctx, unsigned char *iv) {
unsigned char key[SIZEl6];
RAND bytes(key, 16);
return EVP CipherInit ex(ctx, EVP aes 128 cbc(), NULL, key, iv, 1);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: CRYPTO CIPHER PREDICTABLE KEY
Impact: Medium

CWE 1ID: 310, 326, 330, 338

CERT C ID: MSC18-C

3-450

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Predictable cipher key

Introduced in R2017a

3-451

3 Defects

3-452

Predictable random output from predictable seed

Seeding routine uses a predictable seed making the output predictable

Description

Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix
You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and
memory clusters. This information is more random and a user cannot access this
information.

Some standard random routines are inherently cryptographically weak on page 3-630,
and should not be used for security purposes.

Examples

Seed as an Argument

#include <stdlib.h>
#include <time.h>

Predictable random output from predictable seed

void seed rng(int seed)
{

srand (seed) ;

int generate num(void)

{
seed _rng(time (NULL) + 3);
VR

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define CRT_RAND S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate num(void)

{
unsigned int number;
errno_t err;
err = rand_s (&number) ;

if(err != 0)
{

return number;
}

else
{

return err;

3-453

3 Defects

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: RAND SEED PREDICTABLE

Impact: Medium
CWE ID: 330, 337
CERT C ID: MSC32-C

See Also

Deterministic random output from constant seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-454

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/337.html
https://www.securecoding.cert.org/confluence/x/hABhAQ

Privilege drop not verified

Privilege drop not verified

Verify privilege relinquishment was successful

Description

Privilege drop not verified detects calls to functions that relinquish privileges. If you
do not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have
more access to your program than intended. This security hole can cause unexpected
behavior in your code if left open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Examples

Drop Privileges Within a Function

#define BSD SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()
extern int need more privileges;

void missingprivilegedropcheck() {
/* Code intended to run with elevated privileges */

3-455

3 Defects

3-456

/* Temporarily drop elevated privileges */
if (seteuid(getuid()) != 0) {

/* Handle error */

fatal error();

/* Code intended to run with lower privileges */

if (need more privileges)
/* Restore elevated privileges */
if (seteuid(0) != 0) {
/* Handle error */
fatal error();
}

/* Code intended to run with elevated privileges */

/* oo %/

/* Permanently drop elevated privileges */
if (setuid(getuid()) != 0) {

/* Handle error */

fatal error();

}

/* Code intended to run with lower privileges */

}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

One possible correction is to use setuid to verify that the privileges were dropped.

#define BSD SOURCE

#include <sys/types.h>

#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()
extern int need more privileges;

void missingprivilegedropcheck() {
/* Store the privileged ID for later verification */

Privilege drop not verified

uid t privid = geteuid();
/* Code intended to run with elevated privileges */

/* Temporarily drop elevated privileges */
if (seteuid(getuid()) != 0) {

/* Handle error */

fatal error();

}
/* Code intended to run with lower privileges */

if (need more privileges)
/* Restore elevated Privileges */
if (seteuid(privid) != 0) {
/* Handle error */
fatal error();

}

/* Code intended to run with elevated privileges */
}
VT
/* Restore privileges if needed */
if (geteuid() != privid) {
if (seteuid(privid) != 0)

{
/* Handle error */
fatal error();

}

/* Permanently drop privileges */
if (setuid(getuid()) != 0)
{

/* Handle error */

fatal error();

if (setuid(0) != -1)

{
/* Privileges can be restored, handle error */
fatal error();

3-457

3 Defects

/* Code intended to run with lower privileges; */

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: MISSING PRIVILEGE DROP CHECK
Impact: High

CWE ID: 250, 273

CERT C ID: POS37-C

Introduced in R2016b

3-458

http://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/273.html
https://www.securecoding.cert.org/confluence/x/WIAAAQ

Qualifier removed in conversion

Qualifier removed in conversion

Variable qualifier is lost during conversion

Description

Qualifier removed in conversion occurs during a conversion when one variable has a
qualifier and the other does not. For example, when converting from a const int to an
int, the conversion removes the const qualifier.

This defect applies only for projects in C.

Examples

Cast of Character Pointers

void implicit cast (void) {
const char cc, *pcc = &cc;
char * quo;

quo = &cc;
quo = pcc;

read (quo) ;

}

During the assignment to the character g, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

One possible correction is to add the same qualifiers to the new variables. In this
example, changing g to a const char fixes the defect.

void implicit cast (void) {

const char «cc, *pcc = &cc;
const char * quo;

3-459

3 Defects

quo = &cc;
quo = pcc;

read (quo) ;

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the
defect.

void implicit basic cast (void) {
char cc, *pcc = &cc;
char * quo;

quo = &cc;
quo = pcc;

read (quo) ;

Check Information

Group: Programming

Language: C

Default: Off

Command-Line Syntax: QUALIFIER MISMATCH
Impact: Low

CWE ID: 704

CERT C ID: EXP05-C, EXP32-C, EXP37-C
ISO/IEC TS 17961 ID: argcomp

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3-460

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/VAE
https://www.securecoding.cert.org/confluence/x/hAY
https://www.securecoding.cert.org/confluence/x/VQBc

Qualifier removed in conversion

Introduced in R2013b

3-461

3 Defects

3-462

Resource leak

File stream not closed before FILE pointer scope ends or pointer is reassigned

Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

The end of the pointer’s scope.

Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Examples

FILE Pointer Not Released Before End of Scope
#include <stdio.h>

void funcl(void) {
FILE *fpl;
fpl fopen

fprintf (

woeon

W

"datal.txt",

LRl) .
’

() ;

fpl,

w

fpl
fprintf

"dataz.txt",

wyn).
. ’

) ;

fopen (
(fpl,

Resource leak

fclose (fpl):

}

In this example, the file pointer fpl is pointing to a file datal. txt. Before fpl is
explicitly dissociated from the file stream of datal. txt, it is used to access another file

data2.txt.

One possible correction is to explicitly dissociate fp1 from the file stream of datal . txt.

#include <stdio.h>

void funcl(void)
FILE *fpl;
fpl = fopen (
fprintf (fpl,
fclose (fpl);

fpl = fopen (
fprintf (fpl,

fclose (fpl):

Result Information

Group: Resource management

Language: C | C++
Default: On

Command-Line Syntax: RESOURCE _LEAK

Impact: High
CWE ID: 772

CERT C ID: F1042-C, MEM12-C
ISO/IEC TS 17961 ID: fileclose

See Also

Find defects (-checkers)

Topics

“Navigate to Root Cause of Defect”

"datal.txt",

"dataz2.txt",

3-463

http://cwe.mitre.org/data/definitions/772.html
https://www.securecoding.cert.org/confluence/x/GAGQBw
https://www.securecoding.cert.org/confluence/x/8AG7AQ

3 Defects

“Review and Fix Results”

Introduced in R2015b

3-464

Return from computational exception signal handler

Return from computational exception signal handler

Undefined behavior when signal handler returns normally from program error

Description

Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort (), quick exit(),or Exit () in the handler to stop the
program.

Examples

Signal Handler Return from Division by Zero

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig atomic t denom;

/* Declare signal handler to catch division by zero
computation error. */

void sig handler (int s)

3-465

3 Defects

int s0 = s;
if (denom == 0)
{
denom = 1;
}
/* Normal return from computation exception
signal */
return;

long func (int wv)

{

denom = (sig atomic t)v;

if (signal (SIGFPE, sig handler) == SIG ERR)
{

/* Handle error */

long result = 100 / (long)denom;
return result;

In this example, sig handler is declared to handle a division by zero computation
error. The handler changes the value of denom if it is zero and returns, which is
undefined behavior.

After catching a computational exception, call abort () from sig handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig atomic t denom;

/* Declare signal handler to catch division by zero
computation error. */

3-466

Return from computational exception signal handler

void sig handler (int s)

{

int s0 = s;
/* call to abort() to exit the program */
abort () ;

}

long func (int wv)
{

denom = (sig atomic t)v;

if (signal (SIGFPE, sig handler) == SIG ERR)
{

/* Handle error */

}

long result = 100 / (long)denom;
return result;

Result Information

Group: Programming

Language: C | C++

Default: On

Command-Line Syntax: SIG HANDLER COMP EXCP RETURN
Impact: Low

CWE ID: 387,

CERT C ID: SIG35-C

See Also

Function called from signal handler not asynchronous-safe | Function
called from signal handler not asynchronous-safe (strict) | Signal
call from within signal handler

Introduced in R2017b

3-467

https://cwe.mitre.org/data/definitions/387.html
https://www.securecoding.cert.org/confluence/x/QgGRAg

3 Defects

3-468

Return of non const handle to encapsulated data
member

Method returns pointer or reference to internal member of object

Description

Return of non-const handle to encapsulated data member occurs when:

* A class method returns a handle to a data member. Handles include pointers and
references.

* The method is more accessible than the data member. For instance, the method has
access specifier public, but the data member is private or protected.

Risk

The access specifier determines the accessibility of a class member. For instance, a class
member declared with the private access specifier cannot be accessed outside a class.
Therefore, nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member
accessibility changes. For instance, if a public method returns a pointer to a private
data member, the data member is effectively not private anymore. A nonmember,
nonfriend function calling the public method can use the returned pointer to view and
modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you
delete the object, the second pointer can be left dangling. The second pointer points to the
part of an object that does not exist anymore.

Fix
One possible fix is to avoid returning a handle to a data member from a class method.

Return a data member by value so that a copy of the member is returned. Modifying the
copy does not change the data member.

Return of non const handle to encapsulated data member

If you must return a handle, use a const qualifier with the method return type so that
the handle allows viewing, but not modifying, the data member.

Examples

Return of Pointer to private Data Member

#include <string>
#define NUM RECORDS 100

struct Date {
int dd;
int mm;
int yyyy:
}s

struct Period {
Date startDate;
Date endDate;
b

class DataBaseEntry {
private:

std::string employeeName;

Period employmentPeriod;
public:

Period* getPeriod(void);

b

Period* DataBaseEntry::getPeriod(void) {
return &employmentPeriod;

}

void use (Period¥*);
void reset (Period¥*);

int main() {
DataBaseEntry dataBase[NUM RECORDS];
Period* tempPeriod;
for(int i=0;1 < NUM_RECORDS;i++) {

3-469

3 Defects

3-470

tempPeriod = dataBase[i].getPeriod();

use (tempPeriod) ;
reset (tempPeriod) ;
}

return 0;

vold reset (Period* aPeriod) {
aPeriod->startDate.dd =
aPeriod->startDate.mm =
aPeriod->startDate.yyyy
}

1;
1;

2000;

In this example, employmentPeriodis private to the class DataBaseEntry. Itis
therefore immune from modification by nonmember, nonfriend functions. However,
returning a pointer to employmentPeriod breaks this encapsulation. For instance, the
nonmember function reset modifies the member startDate of employmentPeriod.

One possible correction is to return the data member employmentPeriod by value
instead of pointer. Modifying the return value does not change the data member because
the return value is a copy of the data member.

#include <string>
#define NUM_RECORDS 100

struct Date {
int dd;
int mm;
int yyvys
b

struct Period {
Date startDate;
Date endDate;
b

class DataBaseEntry {
private:

std::string employeeName;

Period employmentPeriod;
public:

Period getPeriod(void);

Return of non const handle to encapsulated data member

b

Period DataBaseEntry::getPeriod(void) {
return employmentPeriod;

}

void use (Period¥*);
voild reset (Period¥*);

int main() {

DataBaseEntry dataBase[NUM RECORDS];

Period tempPeriodval;

Period* tempPeriod;

for (int i=0;1 < NUM_RECORDS;i++) {
tempPeriodVal = dataBase[i].getPeriod();
tempPeriod = &tempPeriodval;
use (tempPeriod) ;
reset (tempPeriod) ;

}

return 0;

vold reset (Period* aPeriod) {
aPeriod->startDate.dd = 1;
aPeriod->startDate.mm = 1;

aPeriod->startDate.yyyy 2000;

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: BREAKING DATA ENCAPSULATION

Impact: Medium
CWE ID: 767

3-471

http://cwe.mitre.org/data/definitions/767.html

3 Defects

See Also

Polyspace Analysis Options
Find defects (-checkers)
Topics

”»

“Navigate to Root Cause of Defect
“Review and Fix Results”

Introduced in R2015b

3-472

Returned value of a sensitive function not checked

Returned value of a sensitive function not checked

Sensitive functions called without checking for unexpected return values and errors

Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:
* Ignore the return value.

* Use an output or a return value without testing the validity of the return value.
For this defect, two type of functions are considered: sensitive and critical sensitive.
A sensitive function is a standard function that can encounter:

+ Exhausted system resources (for example, when allocating resources)

+ Changed privileges or permissions

+ Tainted sources when reading, writing, or converting data from external sources
* Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

+ Set privileges (for example, setuid)

* Create a jail (for example, chroot)

* Create a process (for example, fork)

* Create a thread (for example, pthread create)

* Lock or unlock mutex (for example, pthread mutex lock)

* Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can

3-473

3 Defects

3-474

propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix
Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Examples

Sensitive Function Return Ignored
#include <pthread.h>

void initialize() {
pthread attr_t attr;

pthread attr init (&attr);
}

This example shows a call to the sensitive function pthread attr init. The return
value of pthread attr init isignored, causing a defect.

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
pthread attr_t attr;

(void)pthread attr init(&attr);

Returned value of a sensitive function not checked

One possible correction is to test the return value of pthread attr init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal error() abort()

void initialize() {
pthread attr t attr;
int result;

result = pthread attr init(&attr);
if (result != 0) {

/* Handle error */

fatal error();

Critical Function Return Ignored

#include <pthread.h>
extern void *start routine(void *);

void returnnotchecked() {
pthread t thread id;
pthread attr t attr;
void *res;

(void)pthread attr init(&attr);
(void)pthread create(&thread id, &attr, &start routine, ((void *)0));
pthread join(thread id, &res) ;

}

In this example, two critical functions are called: pthread create and pthread join.
The return value of the pthread create is ignored by casting to void, but because
pthread create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread join, returns value that is ignored implicitly. pthread join uses
the return value of pthread create, which was not checked.

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

3-475

3 Defects

3-476

#include <pthread.h>
#include <stdlib.h>
#define fatal error() abort()

extern void *start routine(void *);

vold returnnotchecked () {
pthread t thread id;
pthread attr t attr;
void *res;
int result;

(void)pthread attr init(&attr);

result = pthread create(&thread id, &attr, é&start routine, NULL);

if (result != 0) {
/* Handle error */
fatal error();

}

result = pthread join(thread id, &res);
if (result != 0) {

/* Handle error */

fatal error();

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: RETURN NOT CHECKED

Impact: High

CWE ID: 252, 754

CERT C ID: ERR33-C, EXP12-C, FIO04-C, FI033-C, POS54-C
ISO/TEC TS 17961 ID: 1liberr

Introduced in R2016b

http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/754.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/9YIRAQ
https://www.securecoding.cert.org/confluence/x/iIBfBw

Self assignment not tested in operator

Self assignment not tested in operator

Copy assignment operator does not test for self-assignment

Description

Self assignment not tested in operator occurs when you do not test if the argument
to the copy assignment operator of an object is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;

2 Allocate new memory to the pointer. Initialize the new memory location with
contents obtained from the operator argument.

ptr = new ptrType (* (opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument .ptr, is not associated with
a memory location. *opArgument .ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the
test, perform the assignments in the copy assignment operator.

3-477

3 Defects

Examples

Missing Test for Self-Assignment

class MyClassl { };
class MyClass2 {

public:
MyClass2 () : p_(new MyClassl()) { }
MyClass?2 (const MyClass2& f) : p_(new MyClassl (*f.p)) { }
~MyClass2 () {

delete p ;
}
MyClass2& operator= (const MyClass2& f)
{

delete p ;

p_ = new MyClassl(*f.p);

return *this;

}
private:
MyClassl* p ;
}i

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter £ is the current object, after the statement delete p_, the
memory allocated to pointer £.p_is also deallocated. Therefore, the statementp =

new MyClassl (*f.p) initializes the memory location that p_ points to with
unpredictable values.

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClassl { };
class MyClass2 {

public:
MyClass2 () : p_(new MyClassl()) { }
MyClass2 (const MyClass2& f) : p_(new MyClassl (*f.p)) { }
~MyClass2 () {

delete p_ ;
}
MyClass2& operator= (const MyClass2é& f)
{
if(&f !'= this) {
delete p ;

3-478

Self assignment not tested in operator

p_ = new MyClassl(*f.p);
}

return *this;
}
private:
MyClassl* p ;
bi

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: MISSING SELF ASSIGN TEST
Impact: Medium

See Also

Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-479

3 Defects

Sensitive data printed out

Function prints sensitive data

Description

Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

The checker considers the following as sensitive information:

* Return values of password manipulation functions such as getpw, getpwnam or
getpwuid.

+ Input values of functions such as the Windows-specific function LogonUser.

Risk

Printing sensitive information, such as passwords or user information, allows an
attacker additional access to the information.

Fix
One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

Examples

Printing Passwords

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>

3-480

Sensitive data printed out

#include <unistd.h>

extern void verify null (const char* buf);
void bug sensitivedataprint (const char * my user) {
struct passwd* result, pwd;
long bufsize = sysconf(SC GETPW R SIZE MAX);
char buf[1024] = "";
getpwnam r (my user, &pwd, buf, bufsize, &result);
puts ("Name\n") ;
puts (pwd.pw_name) ;
puts ("PassWord\n") ;
puts (pwd.pw_passwd) ;
memset (buf, 0, sizeof (buf));
verify null (buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_ passwd.

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify null (const char* buf);

void sensitivedataprint (const char * my user) ({
struct passwd* result, pwd;
long bufsize = sysconf(SC GETPW R SIZE MAX);
char buf[1024] = "";
getpwnam r (my user, &pwd, buf, bufsize, &result);
puts ("Name\n") ;
puts (pwd.pw name) ;
puts ("PassWord\n") ;
puts ("XXXXXXXX\n") ;
memset (buf, 0, sizeof (buf));
verify null (buf);

3-481

3 Defects

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: SENSITIVE DATA PRINT

Impact: Medium
CWE ID: 532, 534, 535
CERT C ID: MEMO06-C

See Also

Sensitive heap memory not cleared before release | Uncleared sensitive
data in stack

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3-482

http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/535.html
https://www.securecoding.cert.org/confluence/x/xoC_/

Sensitive heap memory not cleared before release

Sensitive heap memory not cleared before release

Sensitive data not cleared or released by memory routine

Description

Sensitive heap memory not