
Polyspace® Bug Finder™

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
October 2015 Online only Rereleased for Version 1.3.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)
March 2017 Online only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)

Option Descriptions
1

Polyspace Command-Line Options
2

Defects
3

Functions, Properties, Classes, and Apps
4

MISRA C 2012
5

Custom Coding Rules
6

Group 1: Files . 6-2

v

Contents

Group 2: Preprocessing . 6-3

Group 3: Type definitions . 6-4

Group 4: Structures . 6-5

Group 5: Classes (C++) . 6-6

Group 6: Enumerations . 6-7

Group 7: Functions . 6-8

Group 8: Constants . 6-9

Group 9: Variables . 6-10

Group 10: Name spaces (C++) . 6-11

Group 11: Class templates (C++) . 6-12

Group 12: Function templates (C++) . 6-13

Code Metrics
7

Polyspace Report Components — Alphabetical List
8

Configuration Parameters
9

Product mode . 9-2
Settings . 9-2
Dependency . 9-2

vi Contents

Command-Line Information . 9-2

Settings from (C) . 9-3
Settings . 9-3
Dependency . 9-4
Command-Line Information . 9-4

Settings from (C++) . 9-5
Settings . 9-5
Dependency . 9-5
Command-Line Information . 9-6

Use custom project file . 9-7
Settings . 9-7
Dependency . 9-7
Command-Line Information . 9-7

Project configuration . 9-8
Settings . 9-8
Dependency . 9-8
Command-Line Information . 9-8

Enable additional file list . 9-9
Settings . 9-9
Command-Line Information . 9-9

Stub lookup tables . 9-10
Settings . 9-10
Tips . 9-11
Command-Line Information . 9-11

Input . 9-12
Settings . 9-12
Command-Line Information . 9-12

Tunable parameters . 9-13
Settings . 9-13
Command-Line Information . 9-13

Output . 9-14
Settings . 9-14
Command-Line Information . 9-14

vii

Model reference verification depth . 9-15
Settings . 9-15
Command-Line Information . 9-15

Model by model verification . 9-17
Settings . 9-17
Command-Line Information . 9-17

Output folder . 9-18
Settings . 9-18
Command-Line Information . 9-18

Make output folder name unique by adding a suffix 9-19
Settings . 9-19
Command-Line Information . 9-19

Add results to current Simulink project 9-20
Settings . 9-20
Dependencies . 9-20
Command-Line Information . 9-20

Open results automatically after verification 9-21
Settings . 9-21
Command-Line Information . 9-21

Check configuration before verification 9-22
Settings . 9-22
Command-Line Information . 9-22

Verify all occurrences . 9-23
Settings . 9-23
Command-Line Information . 9-23

Approximations Used During Bug Finder Analysis
10

Inputs in Polyspace Bug Finder . 10-2

Global Variables in Polyspace Bug Finder 10-3

viii Contents

Option Descriptions

1

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.
Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-3 for ways in which the source code language can
be automatically determined.

Command line: Use the option -lang. See “Command-Line Information” on page 1-4.

Settings
Default: C-CPP for hand code and C for model-generated code

C
If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

1 Option Descriptions

1-2

CPP
If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. .c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some

options change depending on your language selection. For more information, see the
individual analysis option pages.

• If you create a Polyspace project or options file from your build system, the value of
this option is determined by:

• The argument to the -lang option. For more information, see “Create Project
Automatically” or “Create Project Automatically at Command Line”.

• If you do not specify the -lang option, the source code language is determined by
whether your source files are compiled as C or C++ files.

-lang Argument C or C++ Source Code Language
c C
cpp CPP
cpp11 CPP

The option C++11
extensions (-cpp11-
extension) is also
enabled.

auto or no argument C C
auto or no argument C++ CPP
auto or no argument Both C-CPP

 Source code language (-lang)

1-3

Command-Line Information
Parameter: -lang
Value: c | cpp | c-cpp
Default: c-cpp
Example: polyspace-bug-finder-nodesktop -lang c-cpp -sources
"file1.c,file2.cpp"
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c"

1 Option Descriptions

1-4

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as
compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -compiler. See “Command-Line Information” on page
1-9.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and
bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Settings
Default: generic

 Compiler (-compiler)

1-5

generic
Analysis allows only standard syntax.

For C code, syntax must follow the ANSI® C standard.

For C++ code, syntax must follow ISO®/IEC 14882:2003 C++ (C++ 2003). If you want
to allow C++ 11 syntax (ISO/IEC 14882:2011 C++), also select C++ 11 extensions.

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For more information, see “Limitations” on page 1-8.
gnu4.8

Analysis allows GCC 4.8 syntax.

For more information, see “Limitations” on page 1-8.
gnu4.9

Analysis allows GCC 4.9 syntax.

For more information, see “Limitations” on page 1-8.
clang3.5

Analysis allows Clang 3.5 syntax.

The Clang __attribute__(vector_size()) is not supported.
visual9.0

Analysis allows Microsoft® Visual C++® 2008 syntax.
visual10.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

1 Option Descriptions

1-6

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI C syntax and semantics associated with the Keilo products
from ARM (www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River®
Diab compiler.

If you select diab, the option Target processor type (-target) shows only the
targets that are allowed for the Diab compiler. See Diab Compiler (-compiler
diab).

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking, the option Target processor type (-target) shows only
the targets that are allowed for the TASKING compiler. See TASKING Compiler (-
compiler tasking).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®
compiler.

 Compiler (-compiler)

1-7

http://www.keil.com/
http://www.iar.com/

If you select greenhills, the option Target processor type (-target) shows
only the targets that are allowed for a Green Hills compiler. See Green Hills
Compiler (-compiler greenhills).

Tips
• If you use a Visual Studio compiler, you must use a Target processor type (-

target) option that sets long long to 64 bits. Compatible targets include: i386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

• If you enable Check JSF C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules
that require conforming to the ISO standard. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

• GNU® compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

void foo (int a, int b)
{
 void bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

1 Option Descriptions

1-8

• Complex integer data types.

However, complex floating point data types are supported.
• Structures with flexible array members.

For instance, the structure S has a flexible array member tab.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert
• Managed Extensions for C++ (required for the .NET Framework)
• __declspec keyword with attributes other than noreturn, nothrow,

selectany or thread.

Command-Line Information
Parameter: -compiler
Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | clang3.5
| visual9.0 | visual10.0 | visual11.0 | visual12.0 | visual14.0 |
keil | iar | diab | tasking

 Compiler (-compiler)

1-9

Default: generic
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -OS-target Linux -compiler gnu4.6
Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"file1.cpp,file2.cpp" -OS-target Visual -compiler visual7.1

See Also
Target processor type (-target) | C++11 extensions (-cpp11-extension)
| Block char16/32_t types (-no-uliterals)

Topics
“Analyze Keil or IAR Compiled Code”
“Supported C++ 2011 Extensions”
“Troubleshooting in Polyspace Bug Finder”

1 Option Descriptions

1-10

Target processor type (-target)
Specify size of data types and endianness by using predefined target processor list

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. To see the sizes of types, click the Edit button to the right of the Target
processor type drop-down list.

If you select diab, tasking or greenhills for Compiler (-compiler), in the user
interface, you see only the processors allowed for that compiler. To find the data type
sizes for each processor, see Diab Compiler (-compiler diab). Unlike the
processors for other compilers, you cannot see the data type sizes in the user interface.

Command line: Use the option -target. See “Command-Line Information” on page 1-
14.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386
compared to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace
analysis, but deploy your code to the i386 processor, your Polyspace results are not
always applicable.

 Target processor type (-target)

1-11

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the -fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigne

d
Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
necv850 8 16 32 32 32 32 32 64 32 signed Little 32

[16,
8]

hc08c 8 16 16
[32]

32 32 32 32 [64] 32 [64] 16d unsigne
d

Big 32
[16]

1 Option Descriptions

1-12

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

hc12 8 16 16
[32]

32 32 32 32 [64] 32 [64] 326 signed Big 32
[16]

mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32
[16]

c18 8 16 16 32
[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]
f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16,
8]

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Green Hills
Compiler

See Green Hills Compiler (-compiler greenhills).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the
same as the size listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double,

following the specification of Visual C++ compilers.
b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not

taken into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.

 Target processor type (-target)

1-13

g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more
generic targets. For more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor does
not match the characteristics of a predefined processor, contact MathWorks® technical
support.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | x86_64 | tms320c3x |
sharc21x61 | necv850 | hc08 | hc12 | mpc5xx | c18 | mcpu
Default: i386
Example: polyspace-bug-finder-nodesktop -target m68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

See Also
Polyspace Results
Lower Estimate of Local Variable Size | Higher Estimate of Local
Variable Size

Topics
“Specify Analysis Options”
“Modify Predefined Target Processor Attributes”
“Specify Generic Target Processors”

1 Option Descriptions

1-14

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface, you see only the processors allowed for the Diab compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target
machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.

• In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings
The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

Target cha
r

sho
rt

int long long
long

floa
t

double long
doubl
e

ptr Default
sign of
char

Endianne
ss

Alignment

i386 8 16 32 32 64 32 64 96 32 signed Little 32

 Diab Compiler (-compiler diab)

1-15

Target cha
r

sho
rt

int long long
long

floa
t

double long
doubl
e

ptr Default
sign of
char

Endianne
ss

Alignment

powerpc 8 16 32 32 64 32 64 64 32 unsigne
d

Big 64

powerpc64 8 16 32 64 64 32 64 64 64 unsigne
d

Big 64

arm 8 16 32 32 64 32 64 64 32 unsigne
d

Big 64

coldfire 8 16 32 32 64 32 64 64 32 signed Big 64
mips 8 16 32 32 64 32 64 64 32 signed Big 64
mcore 8 16 32 32 64 32 64 64 32 unsigne

d
Big 64

rh850 8 16 32 32 64 32 64 64 32 signed Little 32
superh 8 16 32 32 64 32 64 64 32 signed Big 64
tricore 8 16 32 32 64 32 64 64 32 signed Little 64
68k, sparc Not supported.

In addition, wchar_t is interpreted as unsigned short and size_t is interpreted as
unsigned int.

If you use Diab compiler flags to change any of these default specifications and want to
emulate these flags, contact Technical Support.

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh
| tricore
Default: powerpc

1 Option Descriptions

1-16

Example: polyspace-bug-finder-nodesktop -compiler diab -target
tricore

See Also
Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2016b

 Diab Compiler (-compiler diab)

1-17

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface, you see only the processors allowed for the TASKING compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files.

• In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

The software supports different versions of the TASKING compiler, depending on the
target:

• TriCore: 6.0 and older versions
• C166: 4.0 and older versions
• ARM: 5.2 and older versions
• RH850: 2.2 and older versions

1 Option Descriptions

1-18

Settings
The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

Target cha
r

short int lon
g

long
long

floa
t

double long
double

ptr Default
sign of
char

Endianne
ss

Alignment

tricore 8 16 32 32 64 32 64 64 32 signed Little 32
c166 8 16 16 32 64 32 64 64 32 signed Little 16
rh850 8 16 32 32 64 32 64 64 32 signed Little 64
arm 8 16 32 32 64 32 64 64 32 signed Big 64

In addition, wchar_t is interpreted as unsigned short and size_t is interpreted as
unsigned int.

If you use TASKING compiler flags to change any of these default specifications and
want to emulate these flags, contact Technical Support.

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
matlabroot\polyspace\verifier\code_prover. Here, matlabroot is the
MATLAB® installation folder, for instance, C:\Program Files\MATLAB\R2017b.

• The CPU used is TC1793. If you use a different CPU, set the following analysis
options in your project:

• Disabled preprocessor definitions (-U): Undefine the macro
__CPU_TC1793B__.

• Preprocessor definitions (-D): Define the macro __CPU__. Enter
__CPU__=xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU.
For instance, enter __CPU_TC1793A__.

 TASKING Compiler (-compiler tasking)

1-19

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project. For more information, see:

• “Create Project Automatically”
• “Create Project Automatically at Command Line”

• For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example: polyspace-bug-finder-nodesktop -compiler tasking -target
tricore

See Also
Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2017a

1 Option Descriptions

1-20

Green Hills Compiler (-compiler greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface, you see only the processors allowed for aGreen Hills compiler. Your choice
of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files.

• In the user interface, add the folder containing your compiler headers to the project.

For more information, see “Update Project”.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

Settings
The targets use the following default sizes in bits for the fundamental types. Unlike
targets for other compilers, you do not see these sizes in the user interface.

 Green Hills Compiler (-compiler greenhills)

1-21

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

powerpc 8 16 32 32 64 32 64 64 32 unsigned Big 64 u
n
s
i
g
n
e
d
i
n
t

s
i
g
n
e
d
l
o
n
g

1 Option Descriptions

1-22

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

powerpc64 8 16 32 64 64 32 64 64 64 unsigned Big 64 u
n
s
i
g
n
e
d
l
o
n
g

s
i
g
n
e
d
i
n
t

 Green Hills Compiler (-compiler greenhills)

1-23

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

arm 8 16 32 32 64 32 64 64 32 unsigned Little 32 u
n
s
i
g
n
e
d
i
n
t

u
n
s
i
g
n
e
d
s
h
o
r
t

1 Option Descriptions

1-24

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

arm64 8 16 32 64 64 32 64 64 64 unsigned Little 64 u
n
s
i
g
n
e
d
l
o
n
g

s
i
g
n
e
d
i
n
t

 Green Hills Compiler (-compiler greenhills)

1-25

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

tricore 8 16 32 32 64 32 64 64 32 signed Little 32 u
n
s
i
g
n
e
d
i
n
t

s
i
g
n
e
d
l
o
n
g

1 Option Descriptions

1-26

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

rh850 8 16 32 32 64 32 64 64 32 signed Little 64 u
n
s
i
g
n
e
d
i
n
t

s
i
g
n
e
d
l
o
n
g

 Green Hills Compiler (-compiler greenhills)

1-27

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

i386 8 16 32 32 64 32 64 96 32 signed Little 32 u
n
s
i
g
n
e
d
i
n
t

s
i
g
n
e
d
l
o
n
g

1 Option Descriptions

1-28

Target ch
ar

short int long long
long

float doubl
e

long
double

ptr Default
sign of
char

Endiannes
s

Alignment D
e
f
i
n
i
t
i
o
n
o
f
s
i
z
e
_
t

D
e
f
i
n
i
t
i
o
n
o
f
w
c
h
a
r
_
t

x86_64 8 16 32 64 64 32 64 128 64 signed Little 128 u
n
s
i
g
n
e
d
l
o
n
g

s
i
g
n
e
d
i
n
t

If you use the Green Hills compiler flags to change any of these default specifications and
want to emulate these flags, contact Technical Support.

 Green Hills Compiler (-compiler greenhills)

1-29

Tips
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green

Hills compiler is configured for native Windows® development, you can see
compilation errors or incorrect analysis results with Code Prover. Contact Technical
Support.

For instance, Green Hills compilers consider a size of 12 bytes for long double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

• If you create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options -filetype and -os_dir are not implemented in the
project. To emulate the -os_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information
Parameter: -compiler greenhills -target
Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm |
i386 | x86_64
Default: powerpc
Example: polyspace-bug-finder-nodesktop -compiler greenhills -target
arm

See Also
Target processor type (-target) | Target processor type (-target)

Topics
“Specify Analysis Options”

Introduced in R2017b

1 Option Descriptions

1-30

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
The Generic target options dialog box opens when you set the Target processor
type to mcpu.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target, for example MyTarget. That new
target is added to the Target processor type option list.

Changing the genetic target has consequences for:

• Detection of overflow
• Computation of sizeof objects

The Target processor type option is available on the Target & Compiler node in the
Configuration pane.

Settings
Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]
• long long [32]
• float [32]
• double [32]
• long double [32]

 Generic target options

1-31

• pointer [16]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set
to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Options
When using the command line, specify your target with the other target specification
options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant byte
First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
little-endian

1 Option Descriptions

1-32

Option Description Available
With

Example

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF).
For example:
SPARC, m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-bug-finder-
nodesktop -default-sign-
of-char unsigned -target
mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
char-is-16bits

 Generic target options

1-33

Option Description Available
With

Example

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
short-is-8bits

-int-is-32bits Define int as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

mcpu, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
nodesktop -target mcpu -
int-is-32bits

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-bug-finder-
nodesktop -target mcpu -
long-is-32bits

-long-long-is-64bits Define long long
as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x61
, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
nodesktop -target mcpu -
double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-bug-finder-
nodesktop -target c18 -
pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
pointer-is-32bits

1 Option Descriptions

1-34

Option Description Available
With

Example

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu,

Only 16 or
32 bits for:
hc08, hc12,
mpc5xx

polyspace-bug-finder-
nodesktop -target mcpu -
align 16

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigne
d

Big

alignmen
t

8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/
8

32/16/
8

32/16/
8

N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigne
d

Big

alignmen
t

8 8 8 8 8 8 8 8 8 N/A N/A

 Generic target options

1-35

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/3
2

32 64 32 654 64 16 unsigne
d

Big

alignmen
t

8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C, H8/
Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/
32

32 64 32 64 64 32 unsigne
d

Big

alignmen
t

8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

See Also
Target processor type (-target)

Topics
“Specify Generic Target Processors”
“Common Generic Targets”

1 Option Descriptions

1-36

Respect C90 standard (-no-language-
extensions)
Restrict analysis to C language specified in ANSI C standard

Description
Restrict the analysis to the C language specified in the ANSI C standard (ISO/IEC
9899:1990). Language extensions added in later standards such as C99 generate
compilation errors.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-38 for other options you must also enable.

Command line: Use the option -no-language-extensions. See “Command-Line
Information” on page 1-38.

Why Use This Option

Use this option if you compile your code by using the C90 standard.

For instance, if you compile with the GCC option -ansi or -std=c90, use this option.

Settings
 On

Restrict the analysis to the C90 standard. Code must conform to the ANSI C
standard (ISO/IEC 9899:1990).

 Off (default)
Allow language extensions from the C99 standard (ISO/IEC 9899:1999).

 Respect C90 standard (-no-language-extensions)

1-37

Dependencies
This option is available only when Source code language (-lang) is set to C or C-
CPP.

If you enable this option, you cannot use Compiler (-compiler) settings keil and
iar.

Command-Line Information
Parameter: -no-language-extensions
Default: off
Example: polyspace-bug-finder-nodesktop -lang c -no-language-
extensions

Introduced in R2015b

1 Option Descriptions

1-38

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependency” on page 1-39 for other options you must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
1-40.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

 Sfr type support (-sfr-types)

1-39

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example: polyspace-bug-finder-nodesktop -lang c -compiler iar -sfr-
types sfr=8,sfr16=16 ...

See Also

Topics
“Specify Target Environment and Compiler Behavior” (Polyspace Code Prover)
“Supported Keil or IAR Language Extensions” (Polyspace Code Prover)

1 Option Descriptions

1-40

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding
up

Description
Specify whether quotients from division and modulus of negative numbers are rounded
up or down.

Note a = (a / b) * b + a % b is always true.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -div-round-down. See “Command-Line Information”
on page 1-42.

Why Use This Option

Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

 Division round down (-div-round-down)

1-41

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced
from a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
 Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

1 Option Descriptions

1-42

Enum type definition (-enum-type-definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. When using this option,
each enum type is represented by the smallest integral type that can hold its
enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -enum-type-definition. See “Command-Line
Information” on page 1-45.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings, compile this code using the compiler settings that you
typically use:

#include <assert.h>
#include <limits.h>

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;
int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)]; /* Breakpoint 1 */

enum { MYMAXINT = INT_MAX } myintenum_t;
int main(void) {

 Enum type definition (-enum-type-definition)

1-43

 assert((MYMAXINT + 1) < 0); /* Breakpoint 2 */
 assert((MYMAXINT + 1) >= 0); /* Breakpoint 3 */
 assert(0); /* Breakpoint 4 */

 return 0;
}

If compilation does not fail even at breakpoint 4, your assert statements do not behave
as expected. Check your compiler documentation and change your compiler settings. If
compilation fails at:

• Breakpoint 1: Use defined-by-compiler for this option.
• Breakpoint 2: Use auto-signed-first for this option.
• Breakpoint 3: Use auto-unsigned-first for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu.

For the gnu compilers, it uses the first type that can hold all of the enumerator
values from this list: signed int, unsigned int, signed long, unsigned long,
signed long long, and unsigned long long.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed
char, unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed isnt, signed long, and signed long long.

1 Option Descriptions

1-44

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -enum-type-definition auto-
signed-first

 Enum type definition (-enum-type-definition)

1-45

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-47.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 1-47.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is
signed and has negative values, the behavior is implementation-defined. Different
compilers choose between arithmetic and logical shift. Use this option to emulate your
compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

1 Option Descriptions

1-46

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However,
arithmetically, the result is -1. This statement causes a compilation error (arrays cannot
have negative size) because the standard right-shift behavior for signed integers is
arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

 Signed right shift (-logical-signed-right-shift)

1-47

C++11 extensions (-cpp11-extension)
Allow C++11 language extensions

Description
Allow C++11 language extensions.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-49 for other options you must also enable.

Command line: Use the option -cpp11-extension. See “Command-Line Information”
on page 1-49.

Why Use This Option

If your compiler allows C++11 language extensions, enable this option.

To check if your compiler allows the extensions, compile this code using the compiler
settings that you typically use:

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else
 void* ptr = nullptr;
#endif

If the code compiles, enable this option.

For instance, on a GCC compiler, the code compiles with the -std=c++11 flag but fails to
compile without the flag. If you typically use the flag, enable this option.

1 Option Descriptions

1-48

Settings
 On

The analysis allows C++11 syntax.
 Off (default)

The analysis does not allow C++11 syntax.

Dependencies
This analysis option is available only when both these conditions are true:

• Source code language (-lang) is CPP or C-CPP.
• Compiler (-compiler) is generic, gnu4.6, or gnu4.7.

Command-Line Information
Parameter: -cpp11-extension
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -cpp11-extension

See Also
Compiler (-compiler) | Block char16/32_t types (-no-uliterals)

Topics
“Supported C++ 2011 Extensions”

 C++11 extensions (-cpp11-extension)

1-49

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-51 for other options you must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on
page 1-51.

Why Use This Option

If your compiler defines char16_t and/or char32_t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of char16_t
and char32_t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and
char32_t. Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.

1 Option Descriptions

1-50

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is CPP or C-CPP.
• Compiler (-compiler) is either generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -compiler gnu4.7 -
cpp11-extension -no-uliterals

See Also
Compiler (-compiler) | C++11 extensions (-cpp11-extension)

Topics
“Supported C++ 2011 Extensions”

 Block char16/32_t types (-no-uliterals)

1-51

Pack alignment value (-pack-alignment-
value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-53.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify
this option for analysis, the #pragma pack directives take precedence. See “#pragma
Directives” (Polyspace Code Prover).

Settings
Default: 8

You can enter one of these values:

1 Option Descriptions

1-52

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example: polyspace-bug-finder-nodesktop -compiler visual10 -pack-
alignment-value 4

 Pack alignment value (-pack-alignment-value)

1-53

Ignore pragma pack directives (-ignore-
pragma-pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-55.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack(2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors. See also “#pragma Directives” (Polyspace Code Prover).

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

1 Option Descriptions

1-54

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-bug-finder-nodesktop -ignore-pragma-pack

See Also

 Ignore pragma pack directives (-ignore-pragma-pack)

1-55

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -size-t-type-is. See “Command-Line Information”
on page 1-57.

Why Use This Option

The analysis associates a data type with size_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size_t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size_t to be defined as
unsigned long or unsigned long long. Replace unsigned int with unsigned
long and try again.

1 Option Descriptions

1-56

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-
long-long
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -size-t-type-is unsigned-long

 Management of size_t (-size-t-type-is)

1-57

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 1-59.

Why Use This Option
The analysis associates a data type with wchar_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings
Default: defined-by-compiler
defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of
wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

1 Option Descriptions

1-58

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is
Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -wchar-t-type-is signed-int

 Management of wchar_t (-wchar-t-type-is)

1-59

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node. See “Dependency” on page 1-61 for other options that you must also
enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 1-61.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option
may not resolve all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.
 Off (default)

Stop analysis for linkage errors.

1 Option Descriptions

1-60

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

 Ignore link errors (-no-extern-c)

1-61

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option
User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 1-64.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as defined when you build your code, it executes code in a
#ifdef _WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifdef _WIN32 statement. The underlying cause for the error is that the
macro _WIN32 is not defined. You must define _WIN32.

1 Option Descriptions

1-62

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a

macro to execute code in a #ifdef macro_name statement, use this syntax.

Tips
• IfPolyspace does not support a non-ANSI keyword and shows a compilation error, use

this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation
errors:

• In the user interface, enter __far=.
• On the command line, use the flag -D __far.

The software replaces the __far keyword with a blank string during preprocessing.
For example:

int __far* pValue;

is converted to:

int * pValue;
• Polyspace recognizes keywords such as restrict and does not allow their use as

identifiers. If you use those keywords as identifiers (because your compiler does not

 Preprocessor definitions (-D)

1-63

recognize them as keywords), replace the disallowed name with another name using
this option. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example: polyspace-bug-finder-nodesktop -D HAVE_MYLIB -D int32_t=int

See Also
Disabled preprocessor definitions (-U)

1 Option Descriptions

1-64

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option
User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 1-66.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as undefined when you build your code, it executes code in a
#ifndef _WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This
option allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifndef _WIN32 statement. The underlying cause for the error is that the
macro _WIN32 is defined. You must undefine _WIN32.

 Disabled preprocessor definitions (-U)

1-65

Settings
No Default

Using the button, add a new row for each macro being undefined.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: macro
Example: polyspace-bug-finder-nodesktop -U HAVE_MYLIB -U USE_COM1

See Also
Preprocessor definitions (-D)

1 Option Descriptions

1-66

Code from DOS or Windows file system (-dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 1-68.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

 Code from DOS or Windows file system (-dos)

1-67

#include "../my_other_file.h"
 Off

Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example: polyspace-bug-finder-nodesktop -dos -I ./
my_copied_include_dir -D test=1

1 Option Descriptions

1-68

Stop analysis if a file does not compile (-stop-if-
compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option

User interface: In the Configuration pane, the option is on the Environment
Settings node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-70.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-69

You see the compilation errors on the Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover).

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

 Off (default)
The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data
type.

• The function can modify arguments passed by reference so that they can take any
value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a
run-time check can flag an operation in orange even though it does not fail in
practice.

If compilation errors occur, the Dashboard pane has a link, which shows that some
files failed to compile. You can click the link and see the compilation errors on the
Output Summary pane.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example: polyspace-bug-finder-nodesktop -sources filename -stop-if-
compile-error

1 Option Descriptions

1-70

Introduced in R2017a

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-71

Command/script to apply to preprocessed files (-
post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option
User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 1-74.

Why Use This Option
You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

1 Option Descriptions

1-72

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the
command or script. After the verification, this script is executed.

Tips
• Your script must be designed to process the standard output from preprocessing and

produce its results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words,

it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a
keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keyword.pl.

Here, matlabroot is the location of the current MATLAB installation such as C:
\Program Files\MATLAB\R2015b\ and <absolute_path> is the location of the
Perl script.

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-73

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.
Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x
For complete list of regular expressions, see Perl documentation.

• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default

1 Option Descriptions

1-74

http://perldoc.perl.org/perlre.html#Regular-Expressions

Example in Linux®: polyspace-bug-finder-nodesktop -sources file_name -
post-preprocessing-command `pwd`/replace_keyword.pl
Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\replace_keyword.pl"

See Also
Command/script to apply after the end of the code verification (-
post-analysis-command)

Topics
“Specify Analysis Options”

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-75

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 1-
77.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work
around the issues, #define the keywords in a header file and provide the header file
with this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

1 Option Descriptions

1-76

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example: polyspace-bug-finder-nodesktop -include `pwd`/sources/
a_file.h -include /inc/inc_file.h

See Also

 Include (-include)

1-77

Include folders (-I)
View include folders used for analysis

Description
View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you
see the folders listed under Include folders.

Settings
This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

1 Option Descriptions

1-78

See Also
-I | Include (-include)

 Include folders (-I)

1-79

Constraint setup (-data-range-
specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint
Specification template file. The template file is an XML file that you can generate in the
Polyspace user interface.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -data-range-specifications. See “Command-Line
Information” on page 1-81.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can sometimes produce false positives.

1 Option Descriptions

1-80

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for
subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings
No Default

Enter full path to the template file. Alternately, click to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example: polyspace-bug-finder-nodesktop -sources file_name -data-
range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub)

Topics
“Specify Analysis Options”
“Constraints”

 Constraint setup (-data-range-specifications)

1-81

Ignore default initialization of global variables (-no-
def-init-glob)
Consider global variables as uninitialized

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -no-def-init-glob. See “Command-Line
Information” on page 1-83.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The
verification generates a red Non-initialized variable error if your code reads a
global or static variable before writing to it.

1 Option Descriptions

1-82

 Off (default)
Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

Tips
• If you initialize a global variable using the generated main:

• Polyspace does not produce a red Non-initialized variable error if your code
reads the variable before writing to it. The error is not produced even if you turn
on the option Ignore default initialization of global variables.

• Polyspace considers that before the first write operation on the variable in a
function, the variable can take any value allowed by its type.

For more information on initializing global variables using the generated main, see
Variables to initialize (-main-generator-writes-variables).

• Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off

See Also

Topics
“Specify Analysis Options”

 Ignore default initialization of global variables (-no-def-init-glob)

1-83

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node. See “Dependency” on page 1-85 for other options that you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on
page 1-85.

Why Use This Option

The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.
You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover).

Settings
 On

The verification does not use Polyspace implementations of the Standard Template
Library.

1 Option Descriptions

1-84

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off

See Also

 No STL stubs (-no-stl-stubs)

1-85

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
This option affects a Code Prover analysis only.

Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -functions-to-stub. See “Command-Line
Information” on page 1-88.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

1 Option Descriptions

1-86

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function

void test(int a, int b);

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)

 Functions to stub (-functions-to-stub)

1-87

Function Type Basic Syntax Argument Syntax
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;my
Type)

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Analysis Options”

1 Option Descriptions

1-88

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the
same task.

User interface: In your Polyspace project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 1-91.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

1-89

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no
extrapolation. The verification then replaces such functions with stubs for more precise
verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

1 Option Descriptions

1-90

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table
functions as the autogenerated functions, use the option -function-behavior-
specifications and map your function to the __ps_lookup_table_clip
function.

• If you run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example: polyspace-code-prover-nodesktop -sources file_name -stub-
embedded-coder-lookup-table-functions

See Also

Introduced in R2016b

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

1-91

Generate results for sources and (-generate-
results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -generate-results-for. See “Command-Line
Information” on page 1-94.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the
same folder as the source files. Often, other header files belong to a third-party library.
Though these header files are required for a precise analysis, you are not interested in
reviewing findings in those headers. Therefore, by default, results are not generated for
those headers. If you are interested in certain headers from third-party libraries, change
the default value of this option.

Settings
Default: source-headers
source-headers

Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

1 Option Descriptions

1-92

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers
Results appear on source files and all header files. The header files can be in the
same folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not

generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.
Generate results for
sources and

Do not generate results for Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:
\Includes
\Custom_Library\ but
not generated for other
header files in C:
\Includes and its
subfolders.

 Generate results for sources and (-generate-results-for)

1-93

Generate results for
sources and

Do not generate results for Final Result

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in C:
\Includes\ but not
generated for other header
files in C:\Includes\
and its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: all-headers | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -generate-results-for "C:\usr\include"

See Also

Topics
“Exclude Files from Analysis”

Introduced in R2016a

1 Option Descriptions

1-94

Do not generate results for (-do-not-generate-
results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -do-not-generate-results-for. See “Command-
Line Information” on page 1-99.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the
same folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

 Do not generate results for (-do-not-generate-results-for)

1-95

all-headers
Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option

Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.
Generate results for
sources and

Do not generate results for Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:
\Includes
\Custom_Library\ but
not generated for other
header files in C:
\Includes and its
subfolders.

1 Option Descriptions

1-96

Generate results for
sources and

Do not generate results for Final Result

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in C:
\Includes\ but not
generated for other header
files in C:\Includes\
and its subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

3 If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C®: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on
the significance of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

 Do not generate results for (-do-not-generate-results-for)

1-97

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name
space shall be distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once

in one and only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly

one external definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple

translation units shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly

one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or

indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-

specification, then all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter O with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter l, the interchange of the letter S with the number 5, the interchange of

1 Option Descriptions

1-98

the letter Z with the number 2 and the interchange of the letter n with the letter
h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with
nested scope.

• Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed
file, the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"

See Also

Topics
“Exclude Files from Analysis”

Introduced in R2016a

 Do not generate results for (-do-not-generate-results-for)

1-99

OSEK multitasking configuration (-osek-
multitasking)
Set up multitasking configuration from OIL file definition

Description
Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option
User interface: In the Configuration pane, the option is available on the
Multitasking pane.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 1-104.

Why Use This Option
If your project includes OIL files, Polyspace can parse these files to set up entry points,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom
Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

1 Option Descriptions

1-100

When you select this option, in your source code, Polsypace supports these OSEK
multitasking keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure entry points, interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This table lists a source code and corresponding OIL file for an OSEK multitasking
application.

 OSEK multitasking configuration (-osek-multitasking)

1-101

OIL File Source Code
CPU mySystem {

 OS myOs {

 EE_OPT = " EXMAPLE ";
 CPU_DATA = modelCPU {

 APP_SRC = " file1.c";
 MULTI_STACK = FALSE ;
 ICD2 = TRUE;
 };
 MCU_DATA = modelCPU {

 MODEL = 11 AA12345678;
 };

 };
 TASK init {
 AUTOSTART = TRUE;
 PRIORITY = 1;
 STACK = SHARED ;
 SCHEDULE = FULL;

 };
 TASK afterinit1 {
 AUTOSTART = TRUE;
 PRIORITY = 1;
 STACK = SHARED ;
 SCHEDULE = FULL;

 };

 RESOURCE res1 {
 RESOURCEPROPERTY = STANDARD;
 };

};

#include <assert.h>
#include "Header_file"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // entry point
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // entry point
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Option Descriptions

1-102

1 Copy the preceding code examples and save them on your machine as osek.oil and
osek.c, for instance in C:\Polyspace_worskpace\OSEK.

2 Run an analysis on your OSEK project by using the command:

polyspace-bug-finder-nodesktop -sources C:\Polyspace_workspace\OSEK\osek.c ^
-I Include_Path -osek-multitasking auto

Include_Path is the path to the include folder containing Header_file, your
header files with OSEK function declarations.

Polyspace detects a data race on page 3-85 on variable var3 because of multiple read
and write operation from tasks init and afterinit1.
#include <assert.h>
#include "Header_file"

int var1;
int var2;
int var3;
There is no defect on var2 since afterinit1 goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on var1 because it is protected
by the GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, search the result log file for "OSEK configuration from oil-files". To access
the log file from the user interface, select Window > Show/Hide View > Run Log. The
log file is located inside your project results folder.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace ignores syntax elements of your OIL files that do not follow the syntax

defined here.

 OSEK multitasking configuration (-osek-multitasking)

1-103

http://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

Command-Line Information
Parameter: -osek-multitasking
Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example: polyspace-bug-finder-nodesktop -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'

See Also

Topics
“Set Up Multitasking Analysis Manually”
“Modeling Multitasking Code”

Introduced in R2017b

1 Option Descriptions

1-104

Configure multitasking manually
Consider that code is intended for multitasking

Description
Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: See “Command-Line Information” on page 1-106.

Why Use This Option

In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
 On

The code is intended for a multitasking application.

 Off (default)
The code is not intended for a multitasking application.

 Configure multitasking manually

1-105

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using the -
entry-points option, you turn on multitasking analysis.

See Also
Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

Topics
“Set Up Multitasking Analysis Manually”

1 Option Descriptions

1-106

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

Specify whether to use the automatic concurrency detection for POSIX®, VxWorks®,
Windows, and μC/OS II multithreading functions.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: Use the option -enable-concurrency-detection. See “Command-
Line Information” on page 1-111.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can explicitly specify your multitasking model using the
option Configure multitasking manually.

Settings
 On

If you use POSIX, VxWorks, Windows, or μC/OS II functions for multitasking, the
analysis automatically detects your multitasking model from your code.

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-107

The supported multitasking functions are the following:
Family Thread Creation Critical Section Begins Critical Section Ends
POSIX pthread_create pthread_mutex_lock pthread_mutex_unloc

k
VxWorks taskSpawn semTake semGive
Windows CreateThread EnterCriticalSectio

n
LeaveCriticalSectio
n

μC/OS II OSTaskCreate OSMutexPend OSMutexPost

To activate automatic detection of concurrency primitives for VxWorks, use the
VxWorks template. For more information on templates, see “Create Project Using
Configuration Template” (Polyspace Code Prover).

Note For VxWorks, concurrency detection is possible only if the multitasking
functions are created from an entry point named main. If the entry point has a
different name, such as vxworks_entry_point, do the following:

1 Verify whole application: Select verify the whole application.
2 Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.
3 Enable automatic concurrency detection for Code Prover (-

enable-concurrency-detection): Enable automatic concurrency detection.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see Configure
multitasking manually.

Limitations
The multitasking model extracted by Polyspace does not include some features.
Polyspace cannot model:

1 Option Descriptions

1-108

• Thread priorities and attributes — Ignored by Polyspace
• Recursive semaphores
• Unbounded thread identifiers — Warning

For example:

extern pthread_t ids[]

Or

pthread_t* ids = (pthread_t* malloc(n*sizeof(pthread_t))
• Calls to concurrency primitive through high-order calls — Warning.
• Termination of threads — Polyspace ignores pthread_join, and replaces

pthread_exit by a standard exit.
• Shared local variables — Only global variables are considered shared. If a local

variable is accessed by multiple threads, the analysis does not take into account the
shared nature of the variable.

Example

In this example, the analysis does not take into account that the local variable x can
be accessed by both task1 and task2 (after the new thread is created).

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args) {
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1() {
 int x;
 x = 2;
 pthread_t id;
 (void)pthread_create(&id,NULL,task2,(void*) &x);
 /* x (local var) passed to task2 */
 x = 3 ;

 /* Unknown thread priority means x = 1 OR x = 3.*/

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-109

 /* However, the analysis considers x = 3 */
 /* Assertion below is green */
 assert(x==3);
}

int main(void) {
 task1();
 return 0;
}

• Shared dynamic memory — Only global variables are considered shared. If a
dynamically allocated memory region is accessed by multiple threads, the analysis
does not take into account its shared nature.

Example

In this example, the analysis does not take into account that lx points to a shared
memory region. The region can be accessed by both task1 and task2 (after the new
thread is created). The Code Prover analysis also reports lx as a non-shared variable.

#include <pthread.h>
#include <stdlib.h>

static int *lx;

void* task2(void* args) {
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1() {
 pthread_t id;
 lx = (int *)malloc(sizeof(int));

 if(lx==NULL) exit(1);

 (void)pthread_create(&id,NULL,task2,(void*) lx);

 *lx = 3 ;

 /* Unknown thread priority means *lx = 1 OR *lx = 3.*/
 /* However, the analysis considers *lx = 3 */
 /* Assertion below is green */
 assert(*lx==3);

1 Option Descriptions

1-110

}

int main(void) {
 task1();
 return 0;
}

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -enable-
concurrency-detection

See Also
Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-
temporal-exclusions-file)

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-111

Entry points (-entry-points)
Specify functions that serve as entry points to your multitasking application

Description
Specify functions that serve as entry points to your code. If the function does not exist,
the verification warns you and continues the verification.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-113 for other options you must also
enable.

Command line: Use the option -entry-points. See “Command-Line Information” on
page 1-113.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

1 Option Descriptions

1-112

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Tips
If you specify a function as an entry point, you must provide its definition. Otherwise, the
analysis does not consider the function as an entry point.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -entry-
points func_1,func_2

See Also
Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

 Entry points (-entry-points)

1-113

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

• Can execute any number of times.
• Can be interrupted by noncyclic entry points on page 1-112, other cyclic tasks and

interrupts on page 1-117.

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the
task as nonpreemptable. See -non-preemptable-tasks.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-115 for other options you must also
enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on
page 1-115.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and
other tasks.

• Data race between two preemptable tasks:

1 Option Descriptions

1-114

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable Data race
including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Command-Line Information
Parameter: -cyclic-tasks
No Default

 Cyclic tasks (-cyclic-tasks)

1-115

Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -cyclic-
tasks func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details
(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

1 Option Descriptions

1-116

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic entry points on page 1-112, cyclic tasks on page 1-

114 or other interrupts.

To model an interrupt that can be interrupted by other interrupts, specify the
interrupt as preemptable. See -preemptable-interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-118 for other options you must also
enable.

Command line: Use the option -interrupts. See “Command-Line Information” on
page 1-119.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other
tasks:

• Dace race between two interrupts:

 Interrupts (-interrupts)

1-117

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any
other task. Even if the operations use the same shared variable without protection,
a data race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Tips
If you specify a function as an interrupt, you must provide its definition. Otherwise, the
analysis does not consider the function as an interrupt.

1 Option Descriptions

1-118

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
interrupts func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Cyclic tasks (-
cyclic-tasks) | Entry points (-entry-points) | Critical section details
(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

 Interrupts (-interrupts)

1-119

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-121 for other options you must also
enable.

Command line: Use the option -routine-disable-interrupts and -routine-
enable-interrupts. See “Command-Line Information” on page 1-122.

Why Use This Option

The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable_all_interrupts disables all interrupts until the
function enable_all_interrupts is called. Even if task, isr1 and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

1 Option Descriptions

1-120

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, you must select the option, Configure multitasking
manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Noncylic entry points on page 1-112
• Cyclic tasks on page 1-114
• Interrupts on page 1-117

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptable at all.

• Protection via disabling interrupts is conceptually different from protection via
critical sections.

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-121

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the
operation x=1 in isr2. If the function begin_critical_section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example: polyspace-bug_finder-nodesktop -sources file_name -routine-
disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends

1 Option Descriptions

1-122

See Also
Configure multitasking manually | Entry points (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file) | Data race |
Data race including atomic operations

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2017a

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-123

Critical section details (-critical-section-
begin -critical-section-end)
Specify functions that begin and end critical sections

Description
When verifying multitasking code, Polyspace considers that a critical section lies
between calls to a lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance,
lock() and unlock() in above example).

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-125 for other options you must also
enable.

Command line: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 1-126.

Why Use This Option

When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait till my_task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each
other.

int var;

1 Option Descriptions

1-124

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

The analysis uses the critical section information to look for concurrency defects such as
data race and deadlock. See “Concurrency Defects”.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

 Critical section details (-critical-section-begin -critical-section-end)

1-125

Tips
• For function calls that begin and end critical sections, Polyspace ignores the function

arguments.

For instance, Polyspace treats the two code sections below as the same critical section.
Starting routine: func_begin Starting routine: func_begin
Ending routine: func_end Ending routine: func_end
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

• The functions that begin and end critical sections must be functions. For instance, if
you define a function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example: polyspace-bug_finder-nodesktop -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
Configure multitasking manually | Entry points (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file) | Data race |
Data race including atomic operations

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

1 Option Descriptions

1-126

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-128 for other options you must also
enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 1-128.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

The analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See Data race.

Settings
No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

 Temporally exclusive tasks (-temporal-exclusions-file)

1-127

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example: polyspace-bug-finder-nodesktop -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"

See Also
Configure multitasking manually | Entry points (-entry-points) |
Critical section details (-critical-section-begin -critical-section-
end) | Data race | Data race including atomic operations

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

1 Option Descriptions

1-128

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-131 for other options that you must
also enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 1-
131.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

 Check MISRA C:2004 (-misra2)

1-129

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C:
2004)”.

custom

Specify coding rules to check. Click to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

1 Option Descriptions

1-130

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-
unit-rules | system-decidable-rules | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra2
all-rules

See Also
Generate results for sources and (-generate-results-for)

 Check MISRA C:2004 (-misra2)

1-131

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“Software Quality Objective Subsets (C:2004)”

1 Option Descriptions

1-132

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-135 for other options that you must
also enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 1-135.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: OBL-rules
OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.

 Check MISRA AC AGC (-misra-ac-agc)

1-133

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:
rule number off|on

Use # to enter comments in the file. For example:
10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc single-unit-rules in the field
Other.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that

1 Option Descriptions

1-134

apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

This setting is not available from the drop-down list in the user interface. To choose
this setting, enter the option -misra-ac-agc system-decidable-rules in the
field Other.

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only .c files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc

 Check MISRA AC AGC (-misra-ac-agc)

1-135

Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2 |
single-unit-rules | system-decidable-rules | file
Default: OBL-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-ac-
agc all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“Software Quality Objective Subsets (AC AGC)”

1 Option Descriptions

1-136

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-139 for other options that you must
also enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 1-
140.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: mandatory-required
mandatory-required

Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these these guidelines. However, you

must complete a formal deviation record, and your deviation must be authorized.

 Check MISRA C:2012 (-misra3)

1-137

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select

custom. To clear specific guidelines, click . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

mandatory
Check for mandatory guidelines.

CERT-rules
Check for a subset of coding rules that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

Check for a subset of coding rules that corresponds to CERT-C rules and
recommendations.

See “CERT C Coding Standard and Polyspace Results”.
ISO-17961

Check for a subset of coding rules that corresponds to the ISO/IEC TS 17961 coding
standard.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

1 Option Descriptions

1-138

custom

Specify guidelines to check. Click to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Custom file format:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration
level because the rules involve more than one translation unit. These rules are
checked in the compilation and linking phases of the analysis.

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

 Check MISRA C:2012 (-misra3)

1-139

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | CERT-rules | CERT-all | ISO-17961
| all | SQO-subset1 | SQO-subset2 | single-unit-rules | system-decidable-
rules | file
Default: mandatory-required
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra3 mandatory-required

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Analysis Options”

1 Option Descriptions

1-140

“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 Check MISRA C:2012 (-misra3)

1-141

Use generated code requirements (-misra3-agc-
mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-144 for other options that you must
also enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 1-144.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

1 Option Descriptions

1-142

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.4, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

 Use generated code requirements (-misra3-agc-mode)

1-143

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -misra3
all -misra3-agc-mode

See Also
Generate results for sources and (-generate-results-for) | Check MISRA
C:2012 (-misra3)

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Polyspace MISRA C:2012 Checker”

1 Option Descriptions

1-144

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Description
Define naming conventions for identifiers and check your code against them.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on
page 1-148.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

 Check custom rules (-custom-rules)

1-145

1
Click . The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation
of rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance,
you can use the following expressions.
Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x
For frequent patterns, you can use the following regular expressions:

1 Option Descriptions

1-146

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not
start and end with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern
that ends with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a
text pattern that ends with a specific suffix and an optional second
suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.
• Manually edit an existing custom coding rules file:

1 Open the file with a text editor.
2 For every custom rule you want to check, enter the following information in

adjacent lines.

a Rule number, followed by on. For example:

4.3 on
b The error message you want to display starting with convention=. For

example:

convention=All struct fields must begin with s_
c The text pattern starting with pattern=. For example:

pattern=s_[A-Za-z0-9_]

To use an existing coding rules file, enter the full path to the file in the field provided

or use in the New File window to navigate to the file location.
 Off (default)

Polyspace does not check your code against custom naming conventions.

 Check custom rules (-custom-rules)

1-147

http://perldoc.perl.org/perlre.html#Regular-Expressions

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -custom-
rules "C:\Rules\myrules.txt"

See Also

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Create Custom Coding Rules”
“Format of Custom Coding Rules File”
“Custom Coding Rules”

1 Option Descriptions

1-148

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type only if you have defined it through a typedef statement in your
source code.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-151 for other options that you must
also enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 1-151.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC
Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the operand
is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

 Effective boolean types (-boolean-types)

1-149

Rule
Number

Rule Statement

10.1 on
page 5-
141

Operands shall not be of an inappropriate essential type

10.3 on
page 5-
150

The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

10.5 on
page 5-
154

The value of an expression should not be cast to an inappropriate
essential type

14.4 on
page 5-
225

The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type.

16.7 on
page 5-
263

A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.
typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

1 Option Descriptions

1-150

Dependencies
This option is available only if you select Check MISRA AC AGC (-misra-ac-agc),
Check MISRA C:2004 (-misra2), or Check MISRA C:2012 (-misra3).

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Activate Coding Rules Checker”
“Specify Boolean Types”
“MISRA C:2004 and MISRA AC AGC Coding Rules”

 Effective boolean types (-boolean-types)

1-151

Allowed pragmas (-allowed-pragmas)
Specify pragma directives for which MISRA C:2004 rule 3.4 must not be applied

Description
Specify pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ rule 16-6-1
must not be applied.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependencies” on page 1-153 for other options that you must
also enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 1-153.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore
during coding rule checking .

1 Option Descriptions

1-152

Dependencies
This option is enabled only if you select one of the following options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++ rules (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) |
Check MISRA C++ rules (-misra-cpp)

Topics
“Activate Coding Rules Checker”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“MISRA C++ Coding Rules”

 Allowed pragmas (-allowed-pragmas)

1-153

Check MISRA C++ rules (-misra-cpp)
Check for violations of MISRA C++ rules

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-155 for other options that you must
also enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
1-156.

Why Use This Option

Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

1 Option Descriptions

1-154

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes
15-0-2 on # rule 15-0-2: exception handling

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp
files.

 Check MISRA C++ rules (-misra-cpp)

1-155

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-cpp
all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”
“Polyspace MISRA C++ Checker”
“Software Quality Objective Subsets (C++)”
“MISRA C++ Coding Rules”

1 Option Descriptions

1-156

Check JSF C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Description
Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node. See “Dependency” on page 1-158 for other options that you must
also enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line
Information” on page 1-159.

Why Use This Option

Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require
verification.

 Check JSF C++ rules (-jsf-coding-rules)

1-157

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

67 off # rule 67: classes
202 on # rule 202: expressions

Tips
• If your project uses a setting other than iso for Compiler (-compiler), some rules

might not be completely checked. For example, AV Rule 8: “All code shall conform to
ISO/IEC 14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

1 Option Descriptions

1-158

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | file
Default: shall-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -jsf-
coding-rules all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”
“Polyspace JSF C++ Checker”
“JSF C++ Coding Rules”

 Check JSF C++ rules (-jsf-coding-rules)

1-159

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Code Metrics”.

Set Option

User interface: In your project configuration, the option is on the Coding Rules &
Code Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 1-161.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see “Review Code Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

1 Option Descriptions

1-160

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification upto the Source Compliance Checking phase. See

Verification level (-to).

Command-Line Information
Parameter: -code-metrics
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -code-
metrics

 Calculate code metrics (-code-metrics)

1-161

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option

User interface: In your project configuration, the option is on the Bug Finder
Analysis node.

Command line: Use the option -checkers. See “Command-Line Information” on page
1-163.

Why Use This Option

The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software. For information on which defects are
default, refer to the individual defect reference pages.

all
All defects.

1 Option Descriptions

1-162

CWE
A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
CERT-rules

A subset of defects that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

A subset of defects that corresponds to CERT-C rules and recommendations.

See “CERT C Coding Standard and Polyspace Results”.
ISO-17961

A subset of defects that corresponds to ISO/IEC TS 17961 coding standard.

See “ISO/IEC TS 17961 Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in matlabroot\polyspace\resources. Here, matlabroot is the MATLAB
installation folder, such as C:\Program Files\MATLAB\R2017a.

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

Refer to the individual defect reference pages for the command-line parameters values.
Parameter: -checkers

 Find defects (-checkers)

1-163

Value: default | all | CWE | CERT-rules | CERT-all | ISO-17961 | defect
group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group | defect parameter
Example 1: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,dataflow -disable-checkers FLOAT_ZERO_DIV
Example 2: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead_code

See Also
“Defects”

Topics
“Specify Analysis Options”
“Bug Finder Defect Groups”

1 Option Descriptions

1-164

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-166 for other options that you must
also enable.

Command line: Use the option -class-analyzer. See “Command-Line Information”
on page 1-166.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated
main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: all

 Class (-class-analyzer)

1-165

all
Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

Tips
If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2

See Also
Verify module or library (-main-generator) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents

1 Option Descriptions

1-166

only (-class-only) | Skip member initialization check (-no-
constructors-init-check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

 Class (-class-analyzer)

1-167

Functions to call within the specified classes (-
class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-170 for other options that you must
also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-170.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings
Default: unused

1 Option Descriptions

1-168

all
The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all
The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent
class.

unused
The generated main calls public and protected methods that are not called in the
code.

unused-public
The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

 Functions to call within the specified classes (-class-analyzer-calls)

1-169

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) |
Analyze class contents only (-class-only) | Skip member initialization
check (-no-constructors-init-check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-170

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-172 for other options that you must
also enable.

Command line: Use the option -class-only. See “Command-Line Information” on
page 1-172.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use the following options to specify the class methods that the generated main must call:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

Unless a class method is called directly or indirectly from main, the software does not
analyze the method. Use this option to specify that only the class methods must be
analyzed and not other functions.

Using these three options, you can check your classes for robustness against run-time
errors.

 Analyze class contents only (-class-only)

1-171

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) |
Functions to call within the specified classes (-class-analyzer-

1 Option Descriptions

1-172

calls) | Skip member initialization check (-no-constructors-init-
check)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

 Analyze class contents only (-class-only)

1-173

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-175 for other options that you must
also enable.

Command line: Use the option -functions-called-before-main. See “Command-
Line Information” on page 1-176.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-
calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

1 Option Descriptions

1-174

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this
function.

• Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

 Initialization functions (-functions-called-before-main)

1-175

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myfunc
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myClass::init(int)

See Also
Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Functions to call (-main-
generator-calls) | Class (-class-analyzer) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-176

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 1-178.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

 Verify whole application

1-177

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also
Verify module or library (-main-generator)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-178

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-180 for other options that you must
also enable.

Command line: Use the option -main. See “Command-Line Information” on page 1-180.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

 Main entry point (-main)

1-179

WinMain
Use WinMain as entry point to your code.

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Set Target operation system (-target) to Visual.
• Select Verify whole application

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example: polyspace-code-prover-nodesktop -sources file_name -OS-
target visual -main _tmain

See Also
Verify module or library (-main-generator)

1 Option Descriptions

1-180

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization
functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-182 for other options that you must
also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-183.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-
called-before-main) to specify which functions the generated main must call. Unless
a function is called directly or indirectly from main, the software does not analyze the
function.

Settings
Default: unused

 Functions to call (-main-generator-calls)

1-181

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-
generator).

Tips
• Select unused when you use Code Prover Verification > Verify files

independently.
• If you want the generated main to call an inlined function, select custom and specify

the name of the function.
• To verify a multitasking application without a main, select none.

1 Option Descriptions

1-182

• The generated main can call the functions in arbitrary order. If you want to call your
functions in a specific order, manually write a main function to call them.

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-calls all

See Also
Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to
call within the specified classes (-class-analyzer-calls) | Analyze
class contents only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

 Functions to call (-main-generator-calls)

1-183

Variables to initialize (-main-generator-
writes-variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-185 for other options that you must
also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-185.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

• C code — public
• C++ Code — uninit

1 Option Descriptions

1-184

uninit
C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.

public
The generated main initializes all global variables except those declared with
keywords static and const.

all
The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click to add
a field. Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-writes-variables all

 Variables to initialize (-main-generator-writes-variables)

1-185

See Also
Verify module or library (-main-generator) | Initialization functions
(-functions-called-before-main) | Functions to call (-main-generator-
calls) | Class (-class-analyzer) | Functions to call within the
specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-186

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-188 for other options that you must
also enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 1-188.

Why Use This Option
Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class
members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

 Skip member initialization check (-no-constructors-init-check)

1-187

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off

See Also
Verify module or library (-main-generator) | Class (-class-analyzer)

Topics
“Specify Analysis Options” (Polyspace Code Prover)

1 Option Descriptions

1-188

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each
file is verified individually, independent of other files in the module. Verification results
can be viewed for the entire project or for individual files.

After you open the verification result for one file, you can see a summary of results for all
files on the Dashboard pane. You can open the results for each file directly from this
summary table. For more information, see “Run File-by-File Local Verification”
(Polyspace Code Prover).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-190 for other options that you must
also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 1-190.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

 Verify files independently (-unit-by-unit)

1-189

Settings
 On

Polyspace creates a separate verification job for each source file.
 Off (default)

Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-
generator).

Tips
• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file

verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

• You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option

Generate a single report including all unit results.

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit

1 Option Descriptions

1-190

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Run File-by-File Local Verification” (Polyspace Code Prover)
“Run File-by-File Remote Verification” (Polyspace Code Prover)
“Multiple File Error in File by File Verification” (Polyspace Code Prover)

 Verify files independently (-unit-by-unit)

1-191

Common source files (-unit-by-unit-common-
source)
Specify files that you want to include with each source file during a file by file
verification

Description
This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-193 for other options that you must
also enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 1-193.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by
file verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the
same function, use this option to specify a file that contains the function definition or a
function stub. Otherwise, Polyspace uses its own stubs for functions that are called but
not defined in the source files. The assumptions behind the Polyspace stubs can be
broader than what you want, leading to orange checks.

1 Option Descriptions

1-192

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to
navigate to the file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Run File-by-File Local Verification” (Polyspace Code Prover)
“Run File-by-File Remote Verification” (Polyspace Code Prover)

 Common source files (-unit-by-unit-common-source)

1-193

Verify model generated code (-main-generator)
Specify that a main function must be generated if it is not present in source files

Description
This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information”
on page 1-195.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-
loop).

• Calls the functions specified by Initialization functions (-functions-
called-before-loop).

The main then performs the following functions in the loop:

1 Option Descriptions

1-194

• Calls the functions specified by Step functions (-functions-called-in-
loop).

• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Verify model generated code (-main-generator)

1-195

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
This option is available only for model- generated code.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-before-loop. See “Command-
Line Information” on page 1-196.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Command-Line Information
Parameter: -functions-called-before-loop

1 Option Descriptions

1-196

No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Step functions (-functions-called-in-loop) |
Termination functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Initialization functions (-functions-called-before-loop)

1-197

Step functions (-functions-called-in-loop)
Specify functions that the generated main must call in the cyclic code loop

Description
This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-in-loop. See “Command-Line
Information” on page 1-199.

Settings
Default: none
none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

1 Option Descriptions

1-198

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions or Termination
functions, to call it inside the cyclic code, use custom and specify the function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Termination functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Step functions (-functions-called-in-loop)

1-199

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-after-loop. See “Command-
Line Information” on page 1-201.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions, you cannot specify it

for Termination functions.

1 Option Descriptions

1-200

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Termination functions (-functions-called-after-loop)

1-201

Parameters (-variables-written-before-
loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-before-loop. See “Command-
Line Information” on page 1-203.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

1 Option Descriptions

1-202

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-
loop) | Termination functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Parameters (-variables-written-before-loop)

1-203

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have anyvalue allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-in-loop. See “Command-Line
Information” on page 1-205.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name. For C++ class members, use the syntax
className::variableName.

1 Option Descriptions

1-204

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
Parameters (-variables-written-before-loop) | Initialization functions
(-functions-called-before-loop) | Step functions (-functions-called-
in-loop) | Termination functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”
“Configure Simulink Model”
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
“Main Generation for Model Analysis”

 Inputs (-variables-written-in-loop)

1-205

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a
main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information”
on page 1-208.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires
a main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

1 Option Descriptions

1-206

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The
generated main:

1 Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

2 Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• In all possible orders, calls all functions that are not called anywhere in the
source files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main

function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you specify multitasking options, the verification ignores your specifications for

main generation. Instead, the verification introduces an empty main function.

 Verify module or library (-main-generator)

1-207

For more information on the multitasking options, see “Verify Multitasking
Applications” (Polyspace Code Prover).

Command-Line Information
Parameter: -main-generator
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Specify Analysis Options”

1 Option Descriptions

1-208

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any
point in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 1-212.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-209

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all
values allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not

expect their values to change between successive operations, disable this option. You

1 Option Descriptions

1-210

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

• If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-211

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -
consider-volatile-qualifier-on-fields

See Also

Topics
“Specify External Constraints” (Polyspace Code Prover)

Introduced in R2016b

1 Option Descriptions

1-212

Float rounding mode (-float-rounding-mode)
Specify rounding modes to consider when determining the results of floating point
arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line
Information” on page 1-216.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for
instance, using the flag -mfpmath=387), use the rounding mode all. However, for your
Polyspace analysis results to agree with run-time behavior, you must prevent use of
extended precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all
rounding modes are considered when you specify all, you can have many orange
Overflow checks resulting from overapproximation.

 Float rounding mode (-float-rounding-mode)

1-213

http://www.cplusplus.com/reference/cfenv/fesetround/

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754

standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover_limitations.pdf in matlabroot\polyspace\verifier
\code_prover. Here, matlabroot is the MATLAB installation folder, for instance,
C:\Program Files\MATLAB\R2017b.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as -ffloat-store. For your Polyspace analysis, use all for rounding
mode to account for double rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the
following table shows the difference in the result of the check when you change your
rounding modes.

1 Option Descriptions

1-214

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1 is
just large enough that the value
nearest to FLT_MAX + eps1 is
greater than FLT_MAX. The Overflow
check is red.

• In the second addition operation, eps2
is just small enough that the value
nearest to FLT_MAX + eps2 is
FLT_MAX. The Overflow check is
green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

• In the first addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT_MAX, so the
addition does not overflow. Combining
these two rounding modes, the
Overflow check is orange.

• In the second addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so the
addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT_MAX, so the
addition overflows. Combining these
two rounding modes, the Overflow
check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:

 Float rounding mode (-float-rounding-mode)

1-215

Rounding mode: to-nearest Rounding mode: all
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example: polyspace-code-prover-nodesktop -sources file_name -float-
rounding-mode all

See Also
Overflow

Introduced in R2016a

1 Option Descriptions

1-216

Respect types in fields (-respect-types-in-
fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 1-218.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will
not be cast to pointers later.

 Respect types in fields (-respect-types-in-fields)

1-217

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to a
pointer. With the option turned off,
Polyspace allows the cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to a
pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces a
red Non-initialized local variable
error when var is read.

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off

See Also
Respect types in global variables (-respect-types-in-globals) | Non-
initialized local variable

1 Option Descriptions

1-218

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line
Information” on page 1-220.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

 Respect types in global variables (-respect-types-in-globals)

1-219

Tips
If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to
pointers.

For instance, in the following example, when you select the option, the results have one
less orange check and one more red check.
Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of local through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off

See Also
Respect types in fields (-respect-types-in-fields) | Non-initialized
local variable

1 Option Descriptions

1-220

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description
This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you
override a function definition by using the option Functions to stub (-
functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library
does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option

User interface: In your project configuration, the option is available on the
Verification Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 1-224.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-221

Why Use This Option

Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.
 Off (default)

The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete

code for verification. Even if an orange check originates from external sources, you are
likely to place protections against unsafe pointers from such sources. For instance, if
you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

• If you enable this option, the number of orange checks in your code might increase.

1 Option Descriptions

1-222

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer
check is green. The verification assumes
that env_ptr is not NULL and any
dereference is within allowed bounds. The
verification assumes that the result of the
dereference is full range. For instance, in
this case, the return value has the full
range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer
check is orange. The verification assumes
that env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.
Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr is
not NULL. The if condition is always
true and the else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr
can be NULL. The if condition is not
always true and the else block can be
reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “Constraints” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not
Null, or Maybe Null. Depending on the Init Mode, you can either override the
global specification for all environment pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-223

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -stubbed-
pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify External Constraints” (Polyspace Code Prover)
“Constraints” (Polyspace Code Prover)

Introduced in R2016b

1 Option Descriptions

1-224

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-226.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on
left shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

1-225

 Off (default)
If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off

See Also
Invalid shift operations

1 Option Descriptions

1-226

Consider non finite floats (-allow-non-finite-
floats)
Enable a verification mode that incorporates infinities and NaNs

Description
This option affects a Code Prover analysis only.

Enable a verification mode that incorporates infinities and NaNs for floating point
operations.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line
Information” on page 1-230.

Why Use This Option

By default, the verification does not incorporate infinities and NaNs. For instance, the
verification terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinity.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.

 Consider non finite floats (-allow-non-finite-floats)

1-227

• NaNs (-check-nan): Use warn-first.

Settings
 On

The verification allows infinities and NaNs. For instance, in this mode:

• The verification assumes that floating-point operations can produce results such
as infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur.

• The verification assumes that floating-point variables with unknown values can
have any value allowed by their type, including infinite or NaN. Floating-point
variables with unknown values include volatile variables and return values of
stubbed functions.

 Off (default)
The verification does not allow infinities and NaNs. For instance, in this mode:

• The verification produces a red check on a floating-point operation that produces
an infinity or a NaN as the only possible result on all execution paths. The
verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

• The verification assumes that floating-point variables with unknown values are
full-range but finite.

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that

you can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

1 Option Descriptions

1-228

For instance, if a division results in infinity, in your code, you specify an
alternative action. Therefore, you do not want the verification to highlight division
operations that result in infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account
for them explicitly in your code, use this option so that the verification
incorporates infinities and NaNs. Use the options -check-nan and -check-
infinite with argument warn so that the verification highlights operations that
result in infinities and NaNs, but does not stop the execution thread.

• If you select this option, the number and type of checks in your code can change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.
Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Polyspace produces a Division by zero
error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Polyspace does
not check for a Division by zero error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The verification assumes that dividing by
zero results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your verification results in the
Polyspace user interface, if you place your
cursor on y and z, you can see the
nonfinite values Inf and NaN respectively
in the tooltip.

• You cannot run the Automatic Orange Tester if you incorporate non-finites in your
verification.

 Consider non finite floats (-allow-non-finite-floats)

1-229

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off

See Also
Infinities (-check-infinite) | NaNs (-check-nan) | Division by zero |
Overflow | Invalid shift operations | Invalid use of standard library
routine

Topics
“Specify Analysis Options” (Polyspace Code Prover)

Introduced in R2016a

1 Option Descriptions

1-230

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-233 for other options you must also enable.

Command line: Use the option -check-infinite. See “Command-Line Information”
on page 1-233.

Why Use This Option
Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis
does not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow
allow

The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.
double func(void) {
 double x=1.0/0.0;

 Infinities (-check-infinite)

1-231

 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the
result of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for
infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

Even though the Overflow check on the / operation is red, the verification
continues. For instance, a green Non-initialized local variable check appears on x
in the return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the
return statement.

1 Option Descriptions

1-232

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -check-
infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Introduced in R2016a

 Infinities (-check-infinite)

1-233

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-236 for other options you must also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page
1-236.

Why Use This Option
Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis
does not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow
allow

The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.
double func(void) {
 double x=1.0/0.0;

1 Option Descriptions

1-234

 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the
result of the operation is NaN when the operands themselves are not NaN. For
instance, the check flags the operation val1 + val2 only if the result can be NaN
when both val1 and val2 are not NaN. The verification does not terminate the
execution thread that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;

 NaNs (-check-nan)

1-235

 return y;
}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -check-
nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Introduced in R2016a

1 Option Descriptions

1-236

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-238 for other options you must also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line
Information” on page 1-238.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can use that pointer to access another structure field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red Illegally
dereferenced pointer check:

void main(void) {
struct S {char a; char b; int c;} x;

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

1-237

char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior

occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -allow-
ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-
bytes) | Illegally dereferenced pointer

1 Option Descriptions

1-238

Detect stack pointer dereference outside scope (-
detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The
dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 1-241.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if
you are accessing a variable outside its scope through the pointer. The check is:

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-239

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptr is
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

• Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green

1 Option Descriptions

1-240

even if the pointer dereference is outside the variable scope, as long as it satisfies
requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off

See Also
Illegally dereferenced pointer

Introduced in R2015a

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-241

Disable checks for non-initialization (-disable-
initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 1-244.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before
being read.

• Non-initialized variable: Variable other than local variable is not
initialized before being read.

• Non-initialized pointer: Pointer is not initialized before being read.

1 Option Descriptions

1-242

• Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:

2004 (Polyspace Code Prover), rule 9.1, and MISRA C:2012 Rule 9.1.
• If you select this option, the number and type of orange checks in your code can

change.

For instance, the following table shows an additional orange check with the option
enabled.

 Disable checks for non-initialization (-disable-initialization-checks)

1-243

Checks for Non-initialization Enabled Checks for Non-initialization Disabled
void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the
else branch of the if statement
exists.

• A green Non-initialized local
variable check on var1 in the last
statement. var1 has the assigned
value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized
local variable checks. At
initialization, the software assumes
that var2 has full range of int
values. Following the if statement,
because the software considers both
if branches, it assumes that var1
also has full range of int values.

• Produces an orange Overflow check
on the + operation. For instance, if
var1 has the maximum int value,
adding 1 to it can cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -disable-
initialization-checks

See Also

1 Option Descriptions

1-244

Ignore overflowing computations on constants (-
ignore-constant-overflows)
Allow overflow in computations involving constants

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow overflow in computations involving constants.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -ignore-constant-overflows. See “Command-Line
Information” on page 1-246.

Why Use This Option
Overflows in computations with compile-time constants can stop the analysis. Use this
option to ignore these overflows and continue the analysis.

For instance, char x = 0xff; causes an overflow according to the ANSI C standard.
However, if you use this option, Polyspace considers that this statement is equivalent to
char x = -1;.

Settings
 On

The verification allows overflows in computations involving constants.
 Off (default)

If an overflow occurs in computations involving constants, the verification can stop.

 Ignore overflowing computations on constants (-ignore-constant-overflows)

1-245

Tips
• This option applies to computations involving compile-time constants only. For

instance, the statement char x = (rand() ? 0xFF:0xFE); causes an Overflow
error irrespective of whether the option is used because the value of x is not known at
compile-time.

Command-Line Information
Parameter: -ignore-constant-overflows
Default: Off

See Also
Overflow

1 Option Descriptions

1-246

Permissive function pointer calls (-permissive-
function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-248 for other options you must also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 1-248.

Settings
 On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int f(int*) can be called by a function pointer declared as int fptr(void*).

 Off (default)
The verification must require that the argument and return types of a function
pointer and the function it calls are identical.

 Permissive function pointer calls (-permissive-function-pointer)

1-247

Tips
• With sources that use function pointers extensively, enabling this option can cause

loss in performance. This loss occurs because the verification has to consider more
execution paths.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -
permissive-function-pointer

See Also

1 Option Descriptions

1-248

Overflow computation mode (-scalar-
overflows-behavior)
Specify whether result of overflow must be wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace must wrap the result of an integer overflow or restrict it to its
extremum value.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -scalar-overflows-behavior. See “Command-Line
Information” on page 1-250.

Why Use This Option

Use this option to specify the assumptions to make following an integer overflow.

Settings
Default: truncate-on-error

truncate-on-error
If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. However,

Polyspace considers that:

 Overflow computation mode (-scalar-overflows-behavior)

1-249

• After a positive Overflow, the result of the operation has an upper bound.
This upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

wrap-around
Polyspace analyzes the remaining code in the current scope even after a red integer
Overflow. However, Polyspace wraps the result of the overflow. For instance, if you
choose this option:

• In the following code, after the red Overflow, Polyspace considers that i has a
value -231.
#include<stdio.h>

void main() {
 int i=1;
 i = i << 30;
 i = i *2;
 printf("%d",i);
}

• In the following code, before the orange Overflow, i has values in the range
[1..231-1]. But, after the orange Overflow, Polyspace considers that i has even
values in the range [-231..2] or [2..231-2].

#include<stdio.h>
int getVal();

void main() {
 int i=getVal();
 if(i>0) {
 i = i*2;
 printf("%d",i);
 }
}

Command-Line Information
Parameter: -scalar-overflows-behavior
Value: wrap-around | truncate-on-error
Default: truncate-on-error

1 Option Descriptions

1-250

Example: polyspace-code-prover-nodesktop -sources file_name -scalar-
overflows-behavior wrap-around

See Also
Detect overflows (-scalar-overflows-checks) | Overflow

 Overflow computation mode (-scalar-overflows-behavior)

1-251

Detect overflows (-scalar-overflows-checks)
Specify whether to check for integer overflows on signed and unsigned variables

Description
This option affects a Code Prover analysis only.

Specify whether to check for integer overflows on signed and unsigned variables.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -scalar-overflows-checks. See “Command-Line
Information” on page 1-253.

Why Use This Option

Use this option to specify the kinds of integer overflows that the verification must detect.

Settings
Default: signed

signed
The verification checks for overflows in computations involving signed integers alone.
This behavior conforms to the ANSI C (ISO C++) standard.

signed-and-unsigned
The verification checks for overflows in all integer computations. This behavior is
stricter than the ANSI C (ISO C++) standard.

1 Option Descriptions

1-252

none
The verification does not check for integer overflows. If a computed value exceeds the
range of its type, the value is wrapped. For instance, in the following code, x is
wrapped to 0 after the sum.

unsigned char x;
x = 255;
x = x+1;

Tips
• Following an overflow, unless you select none, Polyspace can either wrap the result or

restrict it to its extremum value. Use Overflow computation mode to specify how
the verification handles results of an overflow.

• Use the option signed-and-unsigned if you are computing the size of a buffer from
unsigned integers. Using this option helps you detect an overflow at the buffer
computation stage. Otherwise, you might see an error later due to insufficient buffer.

• If you use the option signed-and-unsigned, Polyspace does not produce an
overflow error on bitwise NOT operations if you cast the result of the operation back
to the operand type. For instance, Polyspace does not produce an overflow error on
(uint8_t)(~var) where var is of type uint8_t.

Command-Line Information
Parameter: -scalar-overflows-checks
Value: signed | signed-and-unsigned | none
Default: signed
Example: polyspace-code-prover-nodesktop -sources file_name -scalar-
overflows-checks signed

See Also
Overflow computation mode (-scalar-overflows-behavior) | Overflow

Topics
“Detect Overflows in Buffer Size Computation” (Polyspace Code Prover)

 Detect overflows (-scalar-overflows-checks)

1-253

Allow incomplete or partial allocation of structures
(-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-256 for other options that you must also enable.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 1-256.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

1 Option Descriptions

1-254

Settings
 On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce
an Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;
 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-255

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• The verification also allows partial allocation of structures when you select Enable

pointer arithmetic across fields.
• If you do not turn on this option, you cannot point to the field of a partially allocated

structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -size-in-
bytes

1 Option Descriptions

1-256

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| Illegally dereferenced pointer

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-257

Subnormal detection mode (-check-subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -check-subnormal. See “Command-Line Information”
on page 1-261.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

1 Option Descriptions

1-258

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal
values, the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from

non-subnormal operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

 Subnormal detection mode (-check-subnormal)

1-259

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1
and arg2 are sufficiently close. The first
two checks for subnormal results are
orange. val1 and val2 cannot be
subnormal unless difference1 and
difference2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see only
the first instance where a subnormal
value appears. You do not see red/orange
checks from those subnormal values
propagating to subsequent operations.

• If you want to see where a subnormal value originates and do not want to see
subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for arg1-arg2. If you use the forbid mode and
perform the operation arg1-arg2 twice in succession, only the first operation is
highlighted. The second operation is not highlighted because the subnormal result for
the second operation arises from the same cause as the first operation.

1 Option Descriptions

1-260

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes from
consideration:

• The close values of arg1 and arg2
that led to the subnormal value of
difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The
result of the check on difference2 *
2 is green for the same reason.

• The subnormal value of
difference1.

In the subsequent operation
difference1 * 2, the check is
green.

• You cannot run the Automatic Orange Tester if you check for subnormals in your
verification.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid

 Subnormal detection mode (-check-subnormal)

1-261

Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -check-
subnormal forbid

See Also
Polyspace Results
Subnormal float

Introduced in R2016b

1 Option Descriptions

1-262

Detect uncalled functions (-uncalled-
function-checks)
Detect functions that are not called directly or indirectly from main or another entry
point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -uncalled-function-checks. See “Command-Line
Information” on page 1-264.

Why Use This Option

Typically, after verification, the Dashboard pane shows functions that are not called
during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings
Default: none

 Detect uncalled functions (-uncalled-function-checks)

1-263

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -
uncalled-function-checks all

See Also
Function not called | Function not reachable

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Review Gray Checks” (Polyspace Code Prover)
“Review and Fix Function Not Called Checks” (Polyspace Code Prover)
“Review and Fix Function Not Reachable Checks” (Polyspace Code Prover)

1 Option Descriptions

1-264

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, you can identify the color of the
check for each call. For a tutorial on using this option, see “Identify Function Call with
Run-Time Error” (Polyspace Code Prover).

Settings
Default: none

 Sensitivity context (-context-sensitivity)

1-265

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a
function is small.

custom
The software stores call context information for functions that you specify. To enter

the name of a function, click .

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -context-
sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

See Also

1 Option Descriptions

1-266

Improve precision of interprocedural analysis (-
path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-268.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

1-267

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-268

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 1-270.

Why Use This Option
Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: 2
0

This option corresponds to a static interval verification.

1
This option corresponds to a complex polyhedron model of domain values.

 Precision level (-O)

1-269

2
This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

Tips
For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example: polyspace-code-prover-nodesktop -sources file_name -O1

See Also

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-270

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option

User interface: In your project configuration, the option is available on the Precision
node. See “Dependency” on page 1-272 for other options you must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 1-272.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision >
Precision level.

Click to enter the name of a file without the extension .c and the corresponding
precision level.

 Specific precision (-modules-precision)

1-271

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example: polyspace-code-prover-nodesktop -sources file_name -O1 -
modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-272

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -to. See “Command-Line Information” on page 1-276.

Why Use This Option
There are many reasons you might want to increase or decrease the verification level.
For instance:

• Coding rules are checked early during the compilation phase, with some exceptions
(Polyspace Code Prover) only. If you check for coding rules alone, you can lower the
verification level.

• If you see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: Software Safety Analysis level 2

 Verification level (-to)

1-273

Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.

Software Safety Analysis level 0
The verification process runs once on your source code.

Software Safety Analysis level 1
The verification process runs twice on your source code.

Software Safety Analysis level 2
The verification process runs three time on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3
The verification process runs four times on your source code.

Software Safety Analysis level 4
The verification process runs five times on your source code.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips
• Use a higher verification level for fewer orange checks.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

1 Option Descriptions

1-274

Software Safety Analysis Level 0 Software Safety Analysis Level 1
#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower
level.

• For best results, use the option Software Safety Analysis level 2. If the
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

 Verification level (-to)

1-275

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

• If you want to check for coding rules only, you can run Polyspace on your source code
up to the Source Compliance Checking phase.

With the exception of certain rules, (Polyspace Code Prover) Polyspace checks for
coding rule violations during the compilation phase.

• If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example: polyspace-code-prover-nodesktop -sources file_name -to pass2

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-276

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -timeout. See “Command-Line Information” on page 1-
277.

Why Use This Option

Use this option to impose a time limit on the verification.

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, Technical Support can ask you to
impose a time limit on the verification so that the verification stops if it takes too long.

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout

 Verification time limit (-timeout)

1-277

Value: time
Example: polyspace-code-prover-nodesktop -sources file_name -timeout
5.75

See Also

Topics
“Specify Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-278

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -inline. See “Command-Line Information” on page 1-
281.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined
result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

 Inline (-inline)

1-279

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify
the function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in
one of the calls, the check color is orange.

• If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

1 Option Descriptions

1-280

• Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

• Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

• If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result
as using the option Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -inline
func1,func2

See Also

 Inline (-inline)

1-281

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -k-limiting. See “Command-Line Information” on
page 1-283.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

1 Option Descriptions

1-282

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Default: polyspace-code-prover-nodesktop -sources file_name -k-
limiting 3

See Also

 Depth of verification inside structures (-k-limiting)

1-283

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report after the analysis.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

Set Option
User interface: In your project configuration, the option is available on the Reporting
node.

Command line: See “Command-Line Information” on page 1-285.

Why Use This Option
You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.
 Off (default)

Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

1 Option Descriptions

1-284

Tips
• To generate a report after an analysis is complete, select Reporting > Run Report.

Alternatively, at the command line, use the command polyspace-report-
generator with the options -template and -format.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Specify Analysis Options”
“Generate Reports”

 Generate report

1-285

Bug Finder and Code Prover report (-report-
template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in matlabroot\toolbox\polyspace
\psrptgen\templates\. Here, matlabroot is the MATLAB installation folder.

Set Option

User interface: In your project configuration, the option is on the Reporting node. You
have separate options for Bug Finder and Code Prover analysis. See “Dependencies” on
page 1-292 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information”
on page 1-293.

Why Use This Option

Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinderSummary
The report lists:

1 Option Descriptions

1-286

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

• Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,
the report lists the:

• Defect group.
• Defect name.
• Number of instances of the defect found in the source code.

• Coding Rules Summary: Coding rules along with number of violations.

BugFinder
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of
compilation errors are listed in a separate table.

• Code Metrics Summary: Summary of the various code complexity metrics. For
more information, see “Code Metrics”.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for
analysis. For more information, see “Analysis Options”. If your project has source
files with compilation errors, these files are also listed.

 Bug Finder and Code Prover report (-report-template)

1-287

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or
disabled.

BugFinder_CWE
The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE identifiers for each defect.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For
more information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

CodingRules
For C code, the report lists information about compliance with:

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

This report also contains the Polyspace configuration settings for the analysis. An
additional section states the rules along with the information whether they were
enabled or disabled.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

• Information about whether the project satisfies quality objectives

1 Option Descriptions

1-288

• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

 Bug Finder and Code Prover report (-report-template)

1-289

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules
For C code, the report lists information about compliance with:

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

This report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. An additional section states the rules along with
the information whether they were enabled or disabled.

Developer
The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover).

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

1 Option Descriptions

1-290

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

 Bug Finder and Code Prover report (-report-template)

1-291

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

VariableAccess
The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types,
see “Global Variables” (Polyspace Code Prover). For each global variable, the report
displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations
are denoted by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

Dependencies
This option is available only if you select the Generate report check box.

Tips
The first chapter of the reports contain a summary of the relevant results. You can enter
a Pass/Fail status in that chapter for your project based on the summary. If you use the
template SoftwareQualityObjectives or SoftwareQualityObjectives_Summary,
the status is automatically assigned based on your objectives and the verification results.

1 Option Descriptions

1-292

For more information on enforcing objectives using Polyspace Metrics, see “Compare
Metrics Against Software Quality Objectives” (Polyspace Code Prover).

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates\bug_finder
\BugFinder.rpt
Example: polyspace-code-prover-nodesktop -sources file_name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt

See Also
Generate report | Output format (-report-output-format)

Topics
“Generate Reports”

 Bug Finder and Code Prover report (-report-template)

1-293

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option

User interface: In your project configuration, the option is on the Reporting node. See
“Dependencies” on page 1-295 for other options you must also enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 1-295.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

1 Option Descriptions

1-294

Tips
If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies
This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
output-format pdf

See Also
Generate report | Bug Finder and Code Prover report (-report-template)

Topics
“Specify Analysis Options”
“Generate Reports”

 Output format (-report-output-format)

1-295

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
Enable batch remote analysis.

For batch remote analysis, you need:

• Polyspace and MATLAB Distributed Computing Server™ on the cluster
• MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 1-
297.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

1 Option Descriptions

1-296

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor.
• On the DOS or UNIX® command line, use the polyspace-jobs-manager

command. For more information, see “Run Remote Analysis at the Command
Line”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the
cluster.

 Off (default)
Do not run batch analysis on a remote computer.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-297

polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also
Upload results to Polyspace Metrics (-add-to-results-repository) | -
scheduler

Topics
“Specify Analysis Options”
“Set Up Server for Metrics and Remote Analysis”

1 Option Descriptions

1-298

Upload results to Polyspace Metrics (-add-to-
results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 1-300 for other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line
Information” on page 1-300.

Why Use This Option

Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics”.

 Upload results to Polyspace Metrics (-add-to-results-repository)

1-299

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug
Finder or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

The password is optional.

See Also
“Set Up Server for Metrics and Remote Analysis” | “Set Up Polyspace Metrics” | Run
Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Run Remote Batch Analysis”

1 Option Descriptions

1-300

Use fast analysis mode for Bug Finder (-fast-
analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent
runs analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.
When you launch a Bug Finder fast-analysis, Polyspace analyzes each file for a subset of
defects and coding rules. These defects and rules are coding errors that can be found
within a single compilation unit, such as a single function or file. The software does not
perform interprocedural or cross-functional analysis.

Set Option

User interface: In your project configuration, the option is available on the Run
Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on
page 1-303.

Why Use This Option

If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in
fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-301

Situation What Is Reanalyzed
Source file modified Modified source file
Header file modified Source files that include the modified header

file (directly or indirectly)
Analysis options added or removed All files
Previous fast-analysis results not found All files
For example, consider a Polyspace project with three .c files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal
analysis.

Settings
Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

1 Option Descriptions

1-302

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips
In fast analysis mode:

• You cannot create a new results folder for each run. Even if you choose to create a
new result folder, each new run overwrites the previous one.

• If you enter comments in your results, the comments are automatically imported to
the next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

• Select Tools > Import Comments. Navigate to the sibling results folder
BF_Fast_Result and import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code.
If you run a regular analysis on this code, the comments are imported to your
analysis results.

For details on how to enter code comments, see “Annotate and Hide Known or
Acceptable Results”.

• You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example: polyspace-bug-finder-nodesktop -sources filename -fast-
analysis

See Also
“Defects”

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-303

Topics
“Results Found by Fast Analysis”

1 Option Descriptions

1-304

Command/script to apply after the end of the code
verification (-post-analysis-command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-306.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create
a script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the analysis, this script is executed.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send_email.pl that sends

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-305

an email once the analysis is over, enter matlabroot\sys\perl\win32\bin
\perl.exe <absolute_path>\send_email.pl. Here, matlabroot is the location of
the current MATLAB installation, such as C:\Program Files\MATLAB\R2015b\, and
<absolute_path> is the location of the Perl script.

Tips
If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send_email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux: polyspace-bug-finder-nodesktop -sources file_name -
post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

1 Option Descriptions

1-306

Topics
“Specify Analysis Options”

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-307

Automatic Orange Tester (-automatic-orange-
tester)
Specify that Automatic Orange Tester must be executed after verification

Description
This option affects a Code Prover analysis only.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependency” on page 1-309 for other options you must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line
Information” on page 1-309.

Why Use This Option

The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

1 Option Descriptions

1-308

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates
tests for unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.
• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target &

Compiler > Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...

(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off

 Automatic Orange Tester (-automatic-orange-tester)

1-309

Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester

See Also
Number of automatic tests (-automatic-orange-tester-tests-number) |
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

1 Option Descriptions

1-310

Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration)
Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description
This option affects a Code Prover analysis only.

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-311 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration.
See “Command-Line Information” on page 1-312.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

1-311

• Turn on Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also
Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum test
time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-312

Number of automatic tests (-automatic-
orange-tester-tests-number)
Specify number of tests that Automatic Orange Tester must run

Description
This option affects a Code Prover analysis only.

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-313 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See
“Command-Line Information” on page 1-314.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.
• Turn on Automatic Orange Tester (-automatic-orange-tester).

 Number of automatic tests (-automatic-orange-tester-tests-number)

1-313

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
Automatic Orange Tester (-automatic-orange-tester) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-314

Maximum test time (-automatic-orange-
tester-timeout)
Specify time in seconds allowed for a single test in Automatic Orange Tester

Description
This option affects a Code Prover analysis only.

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests
that do not complete, but increases total verification time.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-315 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-316.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.
• Turn on Automatic Orange Tester (-automatic-orange-tester).

 Maximum test time (-automatic-orange-tester-timeout)

1-315

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-316

Other
Specify additional flags for analysis

Description
Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the
Configuration pane to enter the options. Sometimes, the options and their arguments
have to be preceded by extra flags. When providing you the option, Technical Support
will let you know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags
Example: polyspace-bug-finder-nodesktop -extra-flags -option-name -
extra-flags option_param

 Other

1-317

Polyspace Command-Line Options

2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if
compilation errors occur due to introduction of assembly code.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

2 Polyspace Command-Line Options

2-2

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those respective
sections.

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -asm-begin -asm-end

2-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the Polyspace user interface, select to specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop -author "John Smith"

See Also
-date | -prog | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2 Polyspace Command-Line Options

2-4

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also
-author | -prog | polyspaceBugFinder | polyspaceCodeProver

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -date

2-5

-function-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-function-behavior-specifications file_path

Description
-function-behavior-specifications file_path specifies the path to an XML file.
You can use this XML file to map some of your functions to corresponding standard
functions that Polyspace recognizes. If you run verification from the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run verification from the user interface, file_path is the absolute
path.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Using Option for Precision Improvement

This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a
standard function that is a close analog of your function, use this mapping. Though your
function itself is not analyzed, the analysis is more precise at the locations where you call
the function. For instance, if the verification cannot analyze your function cos32
precisely and considers full range for its return value, map it to the cos function for a
return value in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

2 Polyspace Command-Line Options

2-6

• The verification assumes the same return values for your function as the standard
function.

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos,
the Invalid use of standard library routine check determines if the
argument of acos32 is in [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in matlabroot\polyspace\verifier\cxx\
where matlabroot is the MATLAB installation folder. The functions that you can map
to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function
and produces an orange Non-initialized local variable check on a variable
that you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the function to __ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and
no extrapolation, the verification uses the function names. See “Stub lookup tables”
(Polyspace Code Prover). Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not
follow specific conventions. You must explicitly specify them.

 -function-behavior-specifications

2-7

Using Option for Concurrency Detection

This section applies both to a Bug Finder and a Code Prover analysis.

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Modeling
Multitasking Code”.

Examples

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation
and map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value is 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
matlabroot\polyspace\verifier\cxx\ to another location, for instance, "C:
\Polyspace_projects\Common\Config_files". Change the write permissions
on the file.

2 Polyspace Command-Line Options

2-8

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

<function name="my_lib_cos" std="acos"> </function>

To:

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification.

polyspace-code-prover-nodesktop -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard
function argument. For instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function
might have additional arguments besides the look-up table array itself. In this case,
use argument remapping to specify which argument of your function is the look-up
table array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

 -function-behavior-specifications

2-9

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in
table10.

• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and
a number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use
argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth
argument is the number of bytes. In the file function-behavior-
specifications-sample.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from
&buffer are initialized.

• memset: Variable number of arguments.

2 Polyspace Command-Line Options

2-10

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check
turns red. Otherwise, the verification does not check whether the argument of
my_sqrt is nonnegative.

• Before mapping:

 -function-behavior-specifications

2-11

res = my_sqrt(-1.0);
• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:
res = my_sqrt(-1.0);

• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_lookup_table is within the range of the look-
up table array table.

• Before mapping:
double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:
<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:
double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

• Before mapping:
struct X {
 int field1 ;

2 Polyspace Command-Line Options

2-12

 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red.
The verification assumes that only the field field1 of the structure x is initialized
with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

 -function-behavior-specifications

2-13

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

Effect of Mapping on Concurrency Detection

In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

• Thread creation function: createTask → pthread_create
• Function that begins critical section: takeLock → pthread_mutex_lock
• Function that ends critical section: releaseLock → pthread_mutex_unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model
used in your code and find possible race conditions.

• Before mapping:

The analysis does not detect the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

2 Polyspace Command-Line Options

2-14

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

• Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread_create.
The other available alternatives, createThread or OSTaskCreate, have different
argument types.

Even when mapping to pthread_create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread_create but the first argument of createTask.

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>
 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

 -function-behavior-specifications

2-15

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in matlabroot\polyspace
\verifier\cxx\. matlabroot is the MATLAB installation folder, such as C:
\Program Files\MATLAB\R2017b. See also “Modeling Multitasking Code”.

• After mapping:

The analysis detects the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

2 Polyspace Command-Line Options

2-16

See Also
“Stub lookup tables” (Polyspace Code Prover)

Topics
“Reduce Orange Checks” (Polyspace Code Prover)

Introduced in R2016b

 -function-behavior-specifications

2-17

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from the project
file PRJFILE so that you can run an analysis from the command line. A folder is created
containing the following files:

• source_command.txt — List of source files for the -source-files option.
• options_command.txt — List of the analysis options for the -options-file

option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you

specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace Bug Finder interface, the
script will run from the command line.

Examples

2 Polyspace Command-Line Options

2-18

Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace-bug-finder.

polyspace-bug-finder -generate-launching-script-for myproject.bf.psprj

See Also

Topics
“Create Command-Line Script from Project File”
“Run Local Analysis from DOS or UNIX Command Line”

 -generate-launching-script-for

2-19

-h[elp]
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples
Display the command-line help.

polyspace-bug-finder-nodesktop -h
polyspace-bug-finder-nodesktop -help

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2 Polyspace Command-Line Options

2-20

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h> and
you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include
folders that you specify.

Examples
Include two folders with the analysis.

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc
 -I ./sources

 -I

2-21

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2 Polyspace Command-Line Options

2-22

-import-comments
Import comments and justifications from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder. resultsFolder must be the same
type of analysis you are running. For example, if you are running a Bug Finder analysis,
you cannot import comments from a Code Prover verification.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3
 -import-comments C:\Results\myProj\1.2

See Also
-version | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -import-comments

2-23

-no-assumption-on-absolute-addresses
Remove assumption that absolute address usage is valid

Syntax
-no-assumption-on-absolute-addresses

Description
This option affects Code Prover analysis only.

-no-assumption-on-absolute-addresses removes the default assumption that
absolute addresses used in your code are valid. If you use this option, the verification
produces an orange Absolute address usage check when you assign an absolute
address to a pointer. Otherwise, the check is green by default.

The type of the pointer to which you assign the address determines the initial value
stored in the address. For instance, if you assign the address to an int* pointer,
following this check, the verification assumes that the memory zone that the address
points to is initialized with an int value. The value can be anything allowed for the data
type int.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
The use of option -no-assumption-on-absolute-addresses can increase the
number of orange checks in your code. For instance, the following table shows an
additional orange check with the option enabled.

2 Polyspace Command-Line Options

2-24

Absolute Address Usage Green Absolute Address Usage Orange
void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• A green Absolute address usage
check when the address 0x32 is
assigned to a pointer p.

• A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• An orange Absolute address usage
check when the address 0x32 is
assigned to a pointer p.

• A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

For best use of the Absolute address usage check, leave this check green by default
during initial stages of development. During integration stage, use the option -no-
assumption-on-absolute-addresses and detect all uses of absolute memory
addresses. Browse through them and make sure that the addresses are valid.

See Also
polyspaceCodeProver

Topics
“Run Local Verification at Command Line” (Polyspace Code Prover)

Introduced in R2016a

 -no-assumption-on-absolute-addresses

2-25

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processors that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and uses
the specified number of processors to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, the Bug Finder analysis uses the maximum number of
available processors. Use this option to restrict the number of processors used.

The option uses the physical processors available and not the logical processors. For
instance, if you have 2 physical cores but 4 logical cores, the option -max-processes 4
uses the 2 physical cores only. To determine number of physical processors available,
check the system information in your operating system.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

2 Polyspace Command-Line Options

2-26

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processors.

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -max-processes

2-27

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-non-preemptable-tasks function1[,function2[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic entry points on page 1-112 and
cyclic tasks on page 1-114 but can be interrupted by interrupts on page 1-117,
preemptable or nonpreemptable.

To specify a function as a nonpreemptable cyclic task, you must first specify the following
options:

• Configure multitasking manually
• Entry points (-entry-points) or Cyclic tasks (-cyclic-tasks): Specify

the function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-preemptable-interrupts | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details

2 Polyspace Command-Line Options

2-28

(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

 -non-preemptable-tasks

2-29

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-OS-target no-predefined-OS
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

2 Polyspace Command-Line Options

2-30

See Also
polyspaceBugFinder | polyspaceConfigure

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -options-file

2-31

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-preemptable-interrupts function1[,function2[,...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts on page 1-117, preemptable or nonpreemptable.

To specify a function as a preemptable interrupt, you must first specify the following
options:

• Configure multitasking manually
• Interrupts (-interrupts): Specify the function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Entry points (-entry-points) | Critical section details
(-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

2 Polyspace Command-Line Options

2-32

Topics
“Specify Analysis Options”
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

 -preemptable-interrupts

2-33

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples
Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also
-author | -date | polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2 Polyspace Command-Line Options

2-34

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer
 -report-output-name Airbag_v3.doc

See Also
Output format (-report-output-format) | Bug Finder and Code Prover
report (-report-template) | polyspaceBugFinder

 -report-output-name

2-35

Topics
“Run Local Analysis from DOS or UNIX Command Line”
“Generate Reports”

2 Polyspace Command-Line Options

2-36

-results-dir
Specify the results folder

Syntax
-results-dir

Description
-results-dir specifies where to save the analysis results. The default location at the
command line is the current folder.

If you are running analysis in the user interface, see “Specify Results Folder”.

Examples
Specify to store your results in the RESULTS folder.

polyspace-bug-finder-nodesktop -results-dir RESULTS ...
 export RESULTS=results_'date + %d%B_%HH%M_%A'
polyspace-bug-finder-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -results-dir

2-37

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples
Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspaceBugFinder | polyspaceJobsManager | polyspaceJobsManager

Topics
“Run Remote Analysis at the Command Line”

2 Polyspace Command-Line Options

2-38

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -sources

2-39

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

This option is available only in batch analysis mode.

Examples
Run analysis on files listed in files.txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
 -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
 -sources-list-file "/home/polyspace/files.txt"

See Also
polyspaceBugFinder

2 Polyspace Command-Line Options

2-40

Topics
“Run Remote Analysis at the Command Line”

 -sources-list-file

2-41

-submit-job-from-previous-compilation-results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. If a remote analysis stops after compilation, for instance because of
communication problems between the server and client computers, use this option.

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The Parallel Computing Toolbox™ software submits the analysis job to the MATLAB
job scheduler (MJS) on the head node of the MATLAB Distributed Computing Server
cluster.

3 The head node of the MATLAB Distributed Computing Server cluster assigns the
verification job to a worker node, where the remaining phases of the Polyspace
analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

2 Polyspace Command-Line Options

2-42

Examples
Specify remote analysis with compilation results from a previous analysis.

polyspace-bug-finder-nodesktop -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

See Also
polyspaceBugFinder

Topics
“Run Remote Batch Analysis”
“Run Remote Analysis at the Command Line”

 -submit-job-from-previous-compilation-results

2-43

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not
defined in your code.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my_exit

2 Polyspace Command-Line Options

2-44

http://www.cplusplus.com/reference/cstdlib/exit/

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -termination-functions

2-45

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files”.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

2 Polyspace Command-Line Options

2-46

-v[ersion]
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”

 -v[ersion]

2-47

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in
the XML file located in file_path to interpret code comments in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and
hide results with annotations that use your syntax. If you run Polyspace at the command
line, file_path is the absolute path or path relative to the folder from which you run
the command. If you run Polyspace through the user interface, file_path is the
absolute path.

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane. See
Other.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format,
you can map and import that format to Polyspace.

2 Polyspace Command-Line Options

2-48

Examples

Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero_div.c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.
#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50
 int x=func(2);
 return x;
}
The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

polyspace-bug-finder-nodesktop -sources source_path -misra3 all

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify
them again.

 -xml-annotations-description

2-49

This XML example defines the annotation format used in zero_div.c and maps it to
the Polyspace annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

2 Polyspace Command-Line Options

2-50

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example annotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace
results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace
\annotations\.

2 Rerun the analysis on zero_div.c by using the command:

polyspace-bug-finder-nodesktop -sources source_path -misra3 all ^
-xml-annotations-desriptions ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

 -xml-annotations-description

2-51

See Also

Topics
“Define Custom Annotation Format”
“Annotate and Hide Known or Acceptable Results”

Introduced in R2017b

2 Polyspace Command-Line Options

2-52

Defects

3

*this not returned in copy assignment operator
operator= method does not return a pointer to the current object

Description
*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator=(b) is not returning the assignee a following
the assignment.

For instance:

• The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

• The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)
{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

Risk

Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

3 Defects

3-2

• If the operator= returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial
assignment of data members, following an assignment a=b, the data members of a
and b are different. If you or another user of your class read the data members of the
return value and expect the data members of a, you might have unexpected results.
For an example, see “Return Value of operator= Same as Argument” on page 3-3.

• If the operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b).modifyValue(), you modify a copy of a instead of a itself.

Fix

Return *this from your assignment operators.

Examples

Return Value of operator= Same as Argument
class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return obj;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {

 *this not returned in copy assignment operator

3-3

 /* Do something */
 }
}

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assignment r1 = r0 returns r0 and not r1. Because the
operator= does not copy the data member m_b, the value of r0.m_b and r1.m_b are
different. The following unexpected behavior occurs.
What You Might Expect What Actually Happens
• The statement (r1 = r0).isOk()

returns r1.m_b which has value false
• The if block does not execute.

• The statement (r1 = r0).isOk()
returns r0.m_b which has value true

• The if block executes.

One possible correction is to return *this from operator=.
class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return *this;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */
 }
}

3 Defects

3-4

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: RETURN_NOT_REF_TO_THIS
Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 *this not returned in copy assignment operator

3-5

Abnormal termination of exit handler
Exit handler function interrupts the normal execution of a program

Description
Abnormal termination of exit handler looks for registered exit handlers. Exit
handlers are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior.
Abnormal program termination means other exit handlers are not invoked. These
additional exit handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit
#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}

3 Defects

3-6

void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.
#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;

 Abnormal termination of exit handler

3-7

}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: EXIT_ABNORMAL_HANDLER
Impact: Medium
CWE ID: 705
CERT C ID: ENV32-C

Introduced in R2016b

3 Defects

3-8

http://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/x/voAg

Absorption of float operand
One addition or subtraction operand is absorbed by the other operand

Description
Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk

Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

• If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the ranges

come from. To begin your traceback, search for instances of the operand in your code.
Browse through previous instances of the operand and determine where the
unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual

 Absorption of float operand

3-9

rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2p-1 at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other Operand
#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();

3 Defects

3-10

 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in
the range (0,1e-30) but signal2 is greater than 1.

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0,1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {

 Absorption of float operand

3-11

 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ABSORPTION
Impact: High
CWE ID: 682, 873
CERT C ID: FLP00-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

3 Defects

3-12

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/VQIFAQ

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2016b

 Absorption of float operand

3-13

Alignment changed after memory reallocation
Memory reallocation changes the originally stricter alignment of an object

Description
Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used
to allocate the original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

3 Defects

3-14

Examples

Memory Reallocated Without Preserving the Original Alignment
#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

 Alignment changed after memory reallocation

3-15

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

When you reallocate the memory, use posix_memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */
 free(ptr);
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: On

3 Defects

3-16

Command-Line Syntax: ALIGNMENT_CHANGE
Impact: Low
CERT C ID: MEM36-C

See Also

Introduced in R2017b

 Alignment changed after memory reallocation

3-17

https://www.securecoding.cert.org/confluence/x/4YEzAg

Alternating input and output from a stream without
flush or positioning call
Undefined behavior for input or output stream operations

Description
Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update
stream.

Examples

Read After Write Without Intervening Flush
#include <stdio.h>
#define SIZE20 20

3 Defects

3-18

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

 Alternating input and output from a stream without flush or positioning call

3-19

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;

3 Defects

3-20

 }
}

Result Information
Group:Programming
Language: C | C++
Default: On
Command-Line Syntax: IO_INTERLEAVING
Impact: Low
CERT C ID: FIO39-C
ISO/IEC TS 17961 ID: ioileave

See Also

Introduced in R2017b

 Alternating input and output from a stream without flush or positioning call

3-21

https://www.securecoding.cert.org/confluence/x/tQA1

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description
Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error
#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)
 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

3 Defects

3-22

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Check Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: NULL_PTR_ARITH
Impact: Low
CERT C ID: EXP34-C
ISO/IEC TS 17961 ID: nullref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Null pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Arithmetic operation with NULL pointer

3-23

https://www.securecoding.cert.org/confluence/x/PAw

Array access out of bounds
Array index outside bounds during array access

Description
Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Examples

Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

3 Defects

3-24

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_ARRAY
Impact: High
CWE ID: 119, 466
CERT C ID: API02-C, ARR00-C, ARR30-C, ARR33-C, ARR38-C, MSC15-C, STR31-C
ISO/IEC TS 17961 ID: invptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Pointer access out of bounds

 Array access out of bounds

3-25

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/466.html
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-26

Array access with tainted index
Array index from unsecure source possibly outside array bounds

Description
Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted

buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it
is inside the array range.

Examples

Use Index to Return Buffer Value
#define SIZE100 100
extern int tab[SIZE100];

 Array access with tainted index

3-27

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ARRAY_INDEX
Impact: Medium
CWE ID: 121, 124, 125, 129
CERT C ID: INT04-C, ARR30-C, API00-C, API02-C
ISO/IEC TS 17961 ID: invptr

See Also
Loop bounded with tainted value | Pointer dereference with tainted
offset | Tainted size of variable length array

Topics
“Navigate to Root Cause of Defect”

3 Defects

3-28

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg

“Review and Fix Results”

Introduced in R2015b

 Array access with tainted index

3-29

Assertion
Failed assertion statement

Description
Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note Polyspace does not flag assert(0) as an assertion defect because these statements
are commonly used to disable certain sections of code.

Examples

Check Assertion on Unsigned Integer
#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta < 0);
}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of theta is [5..MAX_INT]. theta is always greater
than zero.

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting_x(unsigned int theta) {

3 Defects

3-30

 theta =+ 5;
 assert(theta > 0);
}

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting_x(int theta) {
 theta = -abs(theta);
 assert(theta < 0);
}

Asserting Zero
#include <assert.h>

#define FLAG 0

int main(void){
 int i_test_z = 0;
 float f_test_z = (float)i_test_z;

 assert(i_test_z);
 assert(f_test_z);
 assert(FLAG);

 return 0;
}

In this example, Polyspace does not flag assert(FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert(0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert(0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value
equal to zero, as seen in the example with assert(i_test_z) and assert(f_test_z).

 Assertion

3-31

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ASSERT
Impact: High

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-32

Bad file access mode or status
Access mode argument of function in fopen or open group is invalid

Description
Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status
flags as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.
Situation Risk Fix
You pass an empty or
invalid access mode to the
fopen function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations
allow extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

 Bad file access mode or status

3-33

Situation Risk Fix
You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
O_ASYNC to the open
function.

On certain
implementations, the mode
O_ASYNC does not enable
signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Examples

Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");

3 Defects

3-34

 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FILE_ACCESS_MODE_STATUS
Impact: Medium
CWE ID: 628, 686
CERT C ID: EXP37-C, FIO11-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Bad file access mode or status

3-35

http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/swA1

Introduced in R2015b

3 Defects

3-36

Bad order of dropping privileges
Dropped higher elevated privileges before dropping lower elevated privileges

Description
Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix

Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

 Bad order of dropping privileges

3-37

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges, which
were dropped previously using setuid, to perform this function. After dropping group

3 Defects

3-38

privileges, this function attempts to drop ancillary groups privileges by using
setgroups. This task requires the higher primary group privileges that were dropped
with setgid. At the end of this function, it is possible to regain group privileges because
the order of dropping privileges was incorrect.

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }

 Bad order of dropping privileges

3-39

 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PRIVILEGE_DROP_ORDER
Impact: High
CWE ID: 250, 696
CERT C ID: POS36-C

Introduced in R2016b

3 Defects

3-40

http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/696.html
https://www.securecoding.cert.org/confluence/x/dgL7

Base class assignment operator not called
Copy assignment operator does not call copy assignment operators of base subobjects

Description
Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk

If this defect occurs, unless you are initializing the base class data members explicitly in
the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix

Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples

Base Class Copy Assignment Operator Not Called
class Base0 {
public:

 Base class assignment operator not called

3-41

 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

In this example, the class Derived is derived from two classes Base0 and Base1. In the
copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Base1 is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

• To find the derived class definition, right-click the derived class name and select Go
To Definition.

• To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

3 Defects

3-42

• To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Base1.

class Base0 {
public:
 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 Base1::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

 Base class assignment operator not called

3-43

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_BASE_ASSIGN_OP_CALL
Impact: High

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-44

Base class destructor not virtual
Class cannot behave polymorphically for deletion of derived class objects

Description
Base class destructor not virtual occurs when a class has virtual functions but not
a virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples

Base Class Destructor Not Virtual
class Base {
 public:
 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

 Base class destructor not virtual

3-45

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

• To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

• To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References.
Browse through search results that start with Base* or Base& to locate pointers or
references to the base class. You can then see if you are using a pointer or reference to
point to a derived class object.

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};

3 Defects

3-46

 virtual void update() {_d += 1;};
 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: DTOR_NOT_VIRTUAL
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

 Base class destructor not virtual

3-47

https://www.securecoding.cert.org/confluence/x/UQBO

Bitwise and arithmetic operation on the same data
Statement with mixed bitwise and arithmetic operations

Description
Bitwise and arithmetic operation on a same data detects statements with bitwise
and arithmetic operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition
unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;
 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

3 Defects

3-48

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_ARITH_MIX
Impact: Low
CWE ID: 710
CERT C ID: INT14-C

Introduced in R2016b

 Bitwise and arithmetic operation on the same data

3-49

http://cwe.mitre.org/data/definitions/710.html
https://www.securecoding.cert.org/confluence/x/dgAV

Bitwise operation on negative value
Undefined behavior for bitwise operations on negative values

Description
Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer

overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples

Right-Shift of Negative Integer
#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

3 Defects

3-50

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{
 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is 0xffffff80 because stringify is signed and negative. The sign bit
is also shifted.

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;

 Bitwise operation on negative value

3-51

 demo_sprintf("%u", stringify >> 24);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_NEG
Impact: Medium
CWE ID: 682, 758
CERT C ID: INT13-C

Introduced in R2016b

3 Defects

3-52

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/BoAD

Buffer overflow from incorrect string format specifier
String format specifier causes buffer argument of standard library functions to overflow

Description
Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size,
an overflow occurs. Overflows can cause unexpected behavior such as memory
corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow
#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

One possible correction is to use a smaller precision in the format specifier.

 Buffer overflow from incorrect string format specifier

3-53

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_FORMAT_BUFFER_OVERFLOW
Impact: High
CWE ID: 124, 125, 126, 127
CERT C ID: ARR33-C, ARR38-C, STR03-C, STR31-C, STR35-C
ISO/IEC TS 17961 ID: taintformatio

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-54

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/LQY
https://www.securecoding.cert.org/confluence/x/KAE

Call through non-prototyped function pointer
Function pointer declared without its type or number of parameters causes unexpected
behavior

Description
Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk
Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix
Before calling the function through a pointer, provide a function prototype.

Examples

Argument Does Not Match Parameter Restriction
#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);

 Call through non-prototyped function pointer

3-55

/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter
of generic_callback[1] is restricted to float values greater than 0.0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr_proto generic_callback[SIZE2] =

3 Defects

3-56

{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Result Information
Group: Programming
Language: C
Default: On
Command-Line Syntax: UNPROTOTYPED_FUNC_CALL
Impact: Medium
ISO/IEC TS 17961 ID: taintnoproto

See Also
Declaration mismatch | Unreliable cast of function pointer

Introduced in R2017b

 Call through non-prototyped function pointer

3-57

Call to memset with unintended value
memset or wmemset used with possibly incorrect arguments

Description
Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.
Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

3 Defects

3-58

Issue Risk Possible Fix
The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to be
filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in a
byte. When you apply a bit
mask, make sure that it
produces an expected result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
0xFF, sizeof(a)).

Examples

Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;

 Call to memset with unintended value

3-59

 memset(buf, (unsigned char)c, sizeof(buf));
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_VALUE
Impact: Low
CWE ID: 665
CERT C ID: INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of memset with size argument zero

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-60

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/RQE

Character value absorbed into EOF
Data type conversion makes a valid character value same as End-of-File (EOF)

Description
Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to
char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This
rationale also applies to wide character values and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

 Character value absorbed into EOF

3-61

Examples

Return Value of getchar Converted to char
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

3 Defects

3-62

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHAR_EOF_CONFUSED
Impact: High
CWE ID: 704
CERT C ID: FIO34-C
ISO/IEC TS 17961 ID: chreof

See Also
Polyspace Results
Errno not checked | Invalid use of standard library integer routine |
Misuse of sign-extended character value | Returned value of a
sensitive function not checked

Introduced in R2017a

 Character value absorbed into EOF

3-63

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/dwGKBw

Closing a previously closed resource
Function closes a previously closed stream

Description
Closing a previously closed resource occurs when a function attempts to close a
stream that was closed earlier in your code and not reopened later.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it. Performing the close operation on the FILE* pointer again
can cause unwanted behavior.

Fix

Remove the redundant close operation.

Examples

Closing Previously Closed Resource
#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data)
 fputc(*data,fp);
 else
 fclose(fp);
 }
 fclose(fp);
}

3 Defects

3-64

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp
twice in succession.

One possible correction is to remove the last fclose operation. To avoid a resource leak,
you must also place an fclose operation in the if(data) block.

#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data) {
 fputc(*data,fp);
 fclose(fp);
 }
 else
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_CLOSE
Impact: High
CWE ID: 672
CERT C ID: FIO46-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Closing a previously closed resource

3-65

http://cwe.mitre.org/data/definitions/672.html
https://www.securecoding.cert.org/confluence/x/KAGQBw

Introduced in R2015b

3 Defects

3-66

Code deactivated by constant false condition
Code segment deactivated by #if 0 directive or if(0) condition

Description
Code deactivated by constant false condition occurs when a block of code is
deactivated using a #if 0 directive or if(0) condition.

Examples

Code Deactivated by Constant False Condition Error
#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++){
 if(Arr[i]>Cutoff){
 Arr[i]=Cutoff;
 Count++;
 }
 }

 #if 0
 /* Defect: Code Segment Deactivated */

 if(Count==0){
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

 Code deactivated by constant false condition

3-67

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if 0 to #if 1.

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++)
 {
 if(Arr[i]>Cutoff)
 {
 Arr[i]=Cutoff;
 Count++;
 }
 }

 /* Fix: Replace #if 0 by #if 1 */
 #if 1
 if(Count==0)
 {
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

Check Information
Group: Data flow
Language: C | C++
Default: off
Command-Line Syntax: DEACTIVATED_CODE
Impact: Low

3 Defects

3-68

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Dead code | Unreachable code | Useless if

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Code deactivated by constant false condition

3-69

Command executed from externally controlled path
Path argument from an unsecure source

Description
Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk

An attacker can:

• Change the command that the program executes, possibly to a command that only the
attack can control.

• Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended
location.

Examples

Executing Path from Environment Variable
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,

3 Defects

3-70

 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);
}

This example obtains a path from an environment variable MYAPP_PATH. system runs a
command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

 Command executed from externally controlled path

3-71

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);
 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_CMD
Impact: Medium
CWE ID: 114, 426

3 Defects

3-72

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/426.html

CERT C ID: API00-C, ENV33-C, STR02-C
ISO/IEC TS 17961 ID: syscall

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Library loaded from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Command executed from externally controlled path

3-73

https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY

Constant block cipher initialization vector
Initialization vector is constant instead of randomized

Description
Constant block cipher initialization vector occurs when you use a constant for the
initialization vector (IV) during encryption.

Risk

Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable
to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a constant IV to encrypt multiple data
streams that have a common beginning, your data becomes vulnerable to dictionary
attacks.

Fix

Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Initialization Vector

#include <openssl/evp.h>

3 Defects

3-74

#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant
initialization vector makes your cipher vulnerable to dictionary attacks.

One possible correction is to use a strong random number generator to produce the
initialization vector. The corrected code here uses the function RAND_bytes declared in
openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_IV
Impact: Medium
CWE ID: 310, 326, 329

 Constant block cipher initialization vector

3-75

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

CERT C ID: MSC18-C

Introduced in R2017a

3 Defects

3-76

https://www.securecoding.cert.org/confluence/x/vQFqAQ

Constant cipher key
Encryption or decryption key is constant instead of randomized

Description
Constant cipher key occurs when you use a constant for the encryption or decryption
key.

Risk

If you use a constant for the encryption or decryption key, an attacker can retrieve your
key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix

Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',

 Constant cipher key

3-77

 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve
a constant key.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_KEY
Impact: Medium
CWE ID: 310, 320, 321, 326
CERT C ID: MSC18-C

Introduced in R2017a

3 Defects

3-78

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Copy constructor not called in initialization list
Copy constructor does not call copy constructors of some members or base classes

Description
Copy constructor not called in initialization list occurs when the copy constructor
of a class does not call the copy constructor of the following in its initialization list:

• One or more of its members.
• Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base class
copy constructor.

Risk
The calls to the copy constructors can be done only from the initialization list. If the calls
are missing, it is possible that an object is only partially copied.

• If the copy constructor of a member is not called, it is possible that the member is not
copied.

• If the copy constructor of a base class is not called, it is possible that the base class
members are not copied.

Fix
If you want your copy constructor to perform a complete copy, call the copy constructor of
all members and all base classes in its initialization list.

Examples

Base Class Copy Constructor Not Called
class Base {
public:

 Copy constructor not called in initialization list

3-79

 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(), i(d.i) { }
private:
 int i;
};

In this example, the copy constructor of class Derived calls the default constructor, but
not the copy constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some
tips for navigating in the source code:

• To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you see the class
members, including those members whose copy constructors are not called.

• To navigate to a base class definition, first navigate to the derived class definition. In
the derived class definition, where the derived class inherits from a base class, right-
click the base class name and select Go To Definition.

One possible correction is to call the copy constructor of class Base from the initialization
list of the Derived class copy constructor.

class Base {
public:
 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

3 Defects

3-80

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(d), i(d.i) { }
private:
 int i;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_COPY_CTOR_CALL
Impact: High

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Base class assignment operator not called

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Copy constructor not called in initialization list

3-81

Copy of overlapping memory
Source and destination arguments of a copy function have overlapping memory

Description
Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function.
For instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you
must move s+1 bytes instead of s bytes.

3 Defects

3-82

Examples

Overlapping Copy
#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_COPY
Impact: Medium
CWE ID: 475, 628, 687
CERT C ID: EXP43-C, MSC15-C
ISO/IEC TS 17961 ID: restrict

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Overlapping assignment

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Copy of overlapping memory

3-83

http://cwe.mitre.org/data/definitions/475.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/QQBLBw
https://www.securecoding.cert.org/confluence/x/EoLu

Introduced in R2015b

3 Defects

3-84

Data race
Multiple tasks perform unprotected non-atomic operations on shared variable

Description
Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.
3 At least one operation is non-atomic. For data race on both atomic and non-atomic

operations, see Data race including atomic operations.

A non-atomic operation can translate into more than one machine instruction. For
instance:

• The operation can involve both a read and write operation. For example, var++
involves reading the value of var, increasing the value by one and writing the
increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long var1, var2;
var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use i386 as your Target processor type, the
Pointer size is 32 bits, and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one long long or double variable to another as non-
atomic.

• The operation can involve writing the return value of a function call to a shared
variable. For example, the operation x=func() involves calling func and writing the
return value of func to x.

 Data race

3-85

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Fix

To fix this defect, protect the operations on the shared variable using critical sections or
temporal exclusion. See Critical section details (-critical-section-begin
-critical-section-end) and Temporally exclusive tasks (-temporal-
exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();

3 Defects

3-86

}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2

task3
Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:
 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

 Data race

3-87

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

Therefore, the three tasks are operating on a shared variable without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

3 Defects

3-88

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

 Data race

3-89

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:
Option Value
Temporally exclusive
tasks on page 1-127

task1 task2 task3

On the command-line, you can use the following:

 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

3 Defects

3-90

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE
Impact: High
CWE ID: 366
CERT C ID: CON00-C, CON09-C, CON32-C, CON43-C, POS49-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Entry points (-entry-points) | Critical section
details (-critical-section-begin -critical-section-end) | Temporally
exclusive tasks (-temporal-exclusions-file) | Disabling all interrupts
(-routine-disable-interrupts -routine-enable-interrupts)

Polyspace Results
Data race including atomic operations | Data race through standard
library function call | Deadlock | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

 Data race

3-91

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/x/FABJAw
https://www.securecoding.cert.org/confluence/x/lAAV
https://www.securecoding.cert.org/confluence/x/aAAV
https://www.securecoding.cert.org/confluence/x/eoBcBQ

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variable

Description
Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.

If you check for this defect, you can see data races on both atomic and non-atomic
operations. To see data races on non-atomic operations alone, select Data race.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Unprotected Atomic Operation on Global Variable from Multiple Tasks

#include<stdio.h>

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var = 1;
}

void task2(void) {
 int local_var;
 local_var = var;

3 Defects

3-92

 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2

task3
Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the write operation var=1; in task task1 executes concurrently with
the read operation local_var=var; in task task2.

task3 uses a critical section that can be reused for the other tasks.

One possible correction is to place these operations in the same critical section:

• var=1; in task1
• local_var=var; in task2

 Data race including atomic operations

3-93

When task1 enters its critical section, the other tasks cannot enter their critical sections
until task1 leaves its critical section. Therefore, the two operations cannot execute
concurrently.

To implement the critical section, reuse the already existing critical section in task3.
Place the two operations between calls to begin_critical_section and
end_critical_section.

#include<stdio.h>

int var;

void begin_critical_section();
void end_critical_section();

void task1(void) {
 begin_critical_section();
 var = 1;
 end_critical_section();
}

void task2(void) {
 int local_var;
 begin_critical_section();
 local_var = var;
 end_critical_section();
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

3 Defects

3-94

Option Value
Temporally exclusive
tasks on page 1-127

task1 task2

On the command-line, use the following:

 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2

Check Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DATA_RACE_ALL
Impact: Medium
CWE ID: 366
CERT C ID: CON00-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file) | Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)

Polyspace Results
Data race | Data race through standard library function call | Deadlock
| Destruction of locked mutex | Double lock | Double unlock | Missing
lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

 Data race including atomic operations

3-95

http://cwe.mitre.org/data/definitions/366.html

Introduced in R2014b

3 Defects

3-96

Data race through standard library function call
Multiple tasks make unprotected calls to thread-unsafe standard library function

Description
Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Set Up Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

 Data race through standard library function call

3-97

https://www.securecoding.cert.org/confluence/x/xIEzAg

Fix

To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs
associated with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);

3 Defects

3-98

https://www.securecoding.cert.org/confluence/x/xIEzAg

 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2

task3
Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

 Data race through standard library function call

3-99

Though task3 calls func inside a critical section, other tasks do not use the same
critical section. Operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in
a critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

3 Defects

3-100

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same
functionality but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

 Data race through standard library function call

3-101

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

3 Defects

3-102

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:
Option Value
Temporally exclusive
tasks on page 1-127

task1 task2 task3

On the command-line, you can use the following:
 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:
task1 task2 task3

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE_STD_LIB
Impact: High
CWE ID: 366
CERT C ID: CON33-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-

 Data race through standard library function call

3-103

http://cwe.mitre.org/data/definitions/366.html
https://www.securecoding.cert.org/confluence/x/xIEzAg

begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Destruction of
locked mutex | Double lock | Double unlock | Missing lock | Missing
unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

3 Defects

3-104

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description
Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS

#1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies
between a call to a lock function and a call to an unlock function. When a task my_task
calls a lock function my_lock, other tasks calling my_lock must wait until my_task
calls the corresponding unlock function. Both lock and unlock functions must have the
form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {

 Deadlock

3-105

 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

3 Defects

3-106

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has

already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();

 Deadlock

3-107

 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

3 Defects

3-108

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

 Deadlock

3-109

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();

3 Defects

3-110

 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DEADLOCK
Impact: High
CWE ID: 833
CERT C ID: CON35-C, POS51-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

 Deadlock

3-111

https://cwe.mitre.org/data/definitions/833.html
https://www.securecoding.cert.org/confluence/x/0gGMAg
https://www.securecoding.cert.org/confluence/x/roBcBQ

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3 Defects

3-112

Dead code
Code does not execute

Description
Dead code occurs when a block of code cannot be reached via any execution path. This
defect excludes:

• Code deactivated by constant false condition, which checks for directives
such as #if 0.

• Unreachable code, which checks for code after a control escape such as goto,
break, or return.

• Useless if, which checks for if statements that are always true.

Examples

Dead Code from if-Statement

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 if(table[ch]>100){ /* Defect: Condition always false */
 return 0;
 }
 return table[ch];
}

 Dead code

3-113

The maximum value in the array table is 4^2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 return table[ch];
}

Dead Code for if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression
card > 7 always evaluates to false because card can be at most 5. The content in the
if statement is not executed.

3 Defects

3-114

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to HEART to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > HEARTS) {
 do_something(card);
 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: DEAD_CODE
Impact: Low
CWE ID: 561
CERT C ID: MSC01-C, MSC07-C, MSC12-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Unreachable code |
Useless if

 Dead code

3-115

http://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-116

Deallocation of previously deallocated pointer
Memory freed more than once without allocation

Description
Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Examples

Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second
free statement on pi releases a block of memory that has been freed already.

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 Deallocation of previously deallocated pointer

3-117

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_DEALLOCATION
Impact: High
CWE ID: 415
CERT C ID: MEM00-C, MEM30-C
ISO/IEC TS 17961 ID: accfree, dblfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of previously freed pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-118

http://cwe.mitre.org/data/definitions/415.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/vAE

Declaration mismatch
Mismatch between function or variable declarations

Description
Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Examples

Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

 Declaration mismatch

3-119

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Inconsistent Structure Alignment
test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square.h does not have the same alignment as square in test2.c.
This error occurs because the #pragma pack(1) statement in circle.h declares specific
alignment. In test2.c, circle.h is included before square.h. Therefore, the #pragma
pack(1) statement from circle.h is not reset to the default alignment after the aCircle
structure. Because of this omission, test2.c infers that the aSquare square structure
also has an alignment of 1 byte.

3 Defects

3-120

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.
test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

 Declaration mismatch

3-121

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: DECL_MISMATCH
Impact: High
CWE ID: 685, 686
CERT C ID: ARR31-C, DCL40-C, EXP37-C, MSC15-C
ISO/IEC TS 17961 ID: argcomp, funcdecl

See Also
Polyspace Analysis Options
Find defects (-checkers) | Ignore pragma pack directives (-ignore-
pragma-pack)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-122

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/EoLu

Delete of void pointer
delete operates on a void* pointer pointing to an object

Description
Delete of void pointer occurs when the delete operator operates on a void* pointer.

Risk

Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer
pointing to the object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a
counter value, the operations do not take place.

Fix

Cast the void* pointer to the appropriate type. Perform the delete operation on the
result of the cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to
MyClass*.

Examples

Delete of void* Pointer
#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}

 Delete of void pointer

3-123

 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

void my_delete(void* ptr) {
 delete ptr;
}

int main() {
 MyClass* pt = new MyClass(0);
 my_delete(pt);
 return 0;
}

In this example, the function my_delete is designed to perform the delete operation on
any type. However, in the function body, the delete operation acts on a void* pointer,
ptr. Therefore, when you call my_delete with an argument of type MyClass, the
MyClass destructor is not called.

One possible solution is to use a function template instead of a function for my_delete.

#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

template<typename T> void safe_delete(T*& ptr) {
 delete ptr;
 ptr = NULL;
}

3 Defects

3-124

int main() {
 MyClass* pt = new MyClass(0);
 safe_delete(pt);
 return 0;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: DELETE_OF_VOID_PTR
Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Delete of void pointer

3-125

Destination buffer overflow in string manipulation
Function writes to buffer at offset greater than buffer size

Description
Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of
characters written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead
to enforce length control.

Another possible solution is to increase the buffer size.

3 Defects

3-126

Examples

Buffer Overflow in sprintf Use
#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_OVERFLOW
Impact: High
CWE ID: 121, 125, 251, 787
CERT C ID: ARR33-C, ARR38-C, ENV01-C, STR07-C, STR08-C, STR31-C, STR38-C
ISO/IEC TS 17961 ID: libptr, taintformatio

 Destination buffer overflow in string manipulation

3-127

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/251.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/OIAc
https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/CIEAAQ
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/FADAAQ

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer underflow in string manipulation

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-128

Destination buffer underflow in string manipulation
Function writes to buffer at a negative offset from beginning of buffer

Description
Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you
obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Examples

Buffer Underflow in sprintf Use
#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 Destination buffer underflow in string manipulation

3-129

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_UNDERFLOW
Impact: High
CWE ID: 124, 786, 787
CERT C ID: ARR38-C, STR35-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer overflow in string manipulation

Topics
“Navigate to Root Cause of Defect”

3 Defects

3-130

http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB

“Review and Fix Results”

Introduced in R2015b

 Destination buffer underflow in string manipulation

3-131

Destruction of locked mutex
Task tries to destroy a mutex in the locked state

Description
Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

Examples

Locking and Destruction in Different Tasks

#include <pthread.h>

3 Defects

3-132

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Entry
points (-entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects
automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

 Destruction of locked mutex

3-133

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

3 Defects

3-134

Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/

 Destruction of locked mutex

3-135

 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);

3 Defects

3-136

 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */

 Destruction of locked mutex

3-137

#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

3 Defects

3-138

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DESTROY_LOCKED
Impact: Medium
CWE ID: 667, 826
CERT C ID: CON31-C, POS48-C

 Destruction of locked mutex

3-139

https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/826.html
https://www.securecoding.cert.org/confluence/x/zIAg
https://www.securecoding.cert.org/confluence/x/aYBcBQ

See Also
Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Entry points (-entry-points)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Double lock | Double unlock
| Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2016b

3 Defects

3-140

Deterministic random output from constant seed
Seeding routine uses a constant seed making the output deterministic

Description
Deterministic random output from constant seed detects random standard
functions that when given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A
hacker can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-630,
and should not be used for security purposes.

Examples

Random Number Generator Initialization
#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

 Deterministic random output from constant seed

3-141

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_CONSTANT
Impact: Medium
CWE ID: 330, 336
CERT C ID: MSC32-C

3 Defects

3-142

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/336.html
https://www.securecoding.cert.org/confluence/x/hABhAQ

See Also
Predictable random output from predictable seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Deterministic random output from constant seed

3-143

Double lock
Lock function is called twice in a task without an intermediate call to unlock function

Description
Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling lock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;

3 Defects

3-144

 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Value
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2
Critical section details on
page 1-124

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before
it leaves the critical section through the call unlock();.

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to lock. However, if other tasks are using
global_var, this code can produce a Data race error.

int global_var;

void lock(void);

 Double lock

3-145

void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

3 Defects

3-146

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to unlock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 lock();
 global_var++;
}

 Double lock

3-147

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2
Critical section details on
page 1-124

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1
has not left the critical section through the call unlock();.

In the result details for the defect, you see the sequence of instructions leading to the
defect. For instance, you see that following the first entry into the critical section, the
execution path:

• Enters function performOperation.

3 Defects

3-148

• Inside performOperation, attempts to enter the same critical section once again.

You can click each event to navigate to the corresponding line in the source code.

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

 Double lock

3-149

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_LOCK
Impact: High
CWE ID: 764
CERT C ID: CON01-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double unlock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3 Defects

3-150

https://cwe.mitre.org/data/definitions/764.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description
Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function my_lock, other tasks calling
my_lock must wait until task1 calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();

 Double unlock

3-151

 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Value
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

task1

task2
Critical section details on
page 1-124

Starting routine Ending routine
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

On the command-line, you can use the following:
 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1
leaves the critical section through the call END_CRITICAL_SECTION();. task1 calls
END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

3 Defects

3-152

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;

 Double unlock

3-153

 END_CRITICAL_SECTION();
}

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_UNLOCK
Impact: High
CWE ID: 765
CERT C ID: CON01-C

3 Defects

3-154

https://cwe.mitre.org/data/definitions/765.html
https://www.securecoding.cert.org/confluence/x/SADQAg

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Missing lock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

 Double unlock

3-155

Errno not checked
errno is not checked for error conditions following function call

Description
Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a

successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

3 Defects

3-156

https://www.securecoding.cert.org/confluence/x/KwBl

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Examples

errno Not Checked After Call to strtol
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

 Errno not checked

3-157

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: ERRNO_NOT_CHECKED
Impact: Medium
CWE ID: 391
CERT C ID: ERR33-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Misuse of errno | Returned value of a sensitive
function not checked

Introduced in R2017a

3 Defects

3-158

https://cwe.mitre.org/data/definitions/391.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag

Errno not reset
errno not reset before calling a function that sets errno

Description
Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Examples

errno Not Reset Before Call to strtod
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)

 Errno not reset

3-159

{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }

3 Defects

3-160

 fatal_error();
 return 0.0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MISSING_ERRNO_RESET
Impact: High
CWE ID: 456, 703
CERT C ID: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive
function not checked

Introduced in R2017a

 Errno not reset

3-161

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl

Exception caught by value
catch statement accepts an object by value

Description
Exception caught by value occurs when a catch statement accepts an object by value.

Risk

If a throw statement passes an object and the corresponding catch statement accepts
the exception by value, the object is copied to the catch statement parameter. This copy
can lead to unexpected behavior such as:

• Object slicing, if the throw statement passes a derived class object.
• Undefined behavior of the exception, if the copy fails.

Fix

Catch the exception by reference or by pointer. Catching an exception by reference is
recommended.

Examples

Standard Exception Caught by Value
#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }

3 Defects

3-162

 catch(std::exception exc) {
 print_str(exc.what());
 }
}

In this example, the catch statement takes a std::exception object by value.
Catching an exception by value causes copying of the object. It can cause undefined
behavior of the exception if the copy fails.

One possible solution is to catch the exception by reference.

#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excpcaughtbyvalue() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Derived Class Exception Caught by Value
#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

 Exception caught by value

3-163

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>

3 Defects

3-164

#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }

 Exception caught by value

3-165

 return 0;
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_CAUGHT_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-166

Exception handler hidden by previous handler
catch statement is not reached because of an earlier catch statement for the same
exception

Description
Exception handler hidden by previous handler occurs when a catch statement is
not reached because a previous catch statement handles the exception.

For instance, a catch statement accepts an object of a class my_exception and a later
catch statement accepts one of the following:

• An object of the my_exception class.
• An object of a class derived from the my_exception class.

Risk

Because the catch statement is not reached, it is effectively dead code.

Fix

One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch
statement that accepts the derived class exception before the catch statement that
accepts the base class exception.

Examples

catch Statement Hidden by Previous Statement
#include <new>

 Exception handler hidden by previous handler

3-167

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
}

In this example, the second catch statement accepts a std::bad_alloc object. Because
the std::bad_alloc class is derived from a std::exception class, the second catch
statement is hidden by the previous catch statement that accepts a std::exception
object.

The defect appears on the parameter type of the catch statement. To find which catch
statement hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For
"catch"in Current Source File.

2 On the Search pane, click each search result, proceeding backwards from the
current catch statement. Continue until you find the catch statement that hides
the catch statement with the defect.

One possible correction is to place the catch statement with the derived class parameter
first.

#include <new>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excphandlerhidden() {
 try {
 throw_exception();
 }

3 Defects

3-168

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_HANDLER_HIDDEN
Impact: Medium
CWE ID: 755

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Exception handler hidden by previous handler

3-169

http://cwe.mitre.org/data/definitions/755.html

Execution of a binary from a relative path can be
controlled by an external actor
Command with relative path is vulnerable to malicious attack

Description
Execution of a binary from a relative path can be controlled by an external
actor detects calls to an external command. If the call uses a relative path or no path to
call the external command, Bug Finder flags the call as a defect.

This defect also finds results that the Execution of externally controlled command
defect checker finds.

Risk

By using a relative path or no path to call an external command, your program uses an
unsafe search process to find the command. An attacker can control the search process
and replace the intended command with a command of their own.

Fix

When you call an external command, specify the full path.

Examples

Call Command with Relative Path
define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>

3 Defects

3-170

include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

In this example, Bug Finder flags popen because it tries to call ls -la using a relative
path. An attacker can manipulate the command to use a malicious version.

One possible correction is to use the full path when calling the command.

define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "/usr/bin/ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

 Execution of a binary from a relative path can be controlled by an external actor

3-171

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_CMD
Impact: Medium
CWE ID: 114, 427

See Also
Load of library from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Execution of externally
controlled command | Command executed from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-172

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/427.html

Execution of externally controlled command
Command argument from an unsecure source vulnerable to operating system command
injection

Description
Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk

Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be
read or modified, execute unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist
of acceptable inputs and compare the input against this list.

Examples

Call Argument Command
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {

 Execution of externally controlled command

3-173

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void taintedexternalcmd(char* usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);
}

This example function calls a command from a user argument without checking the
command variable.

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(int usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;
 case CMD1:

3 Defects

3-174

 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_EXTERNAL_CMD
Impact: Medium
CWE ID: 77, 78, 88, 114
CERT C ID: API00-C, ENV33-C, STR02-C
ISO/IEC TS 17961 ID: syscall

See Also
Use of externally controlled environment variable | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path |
Execution of a binary from a relative path can be controlled by an
external actor

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Execution of externally controlled command

3-175

http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY

File access between time of check and use
(TOCTOU)
File or folder might change state due to access race

Description
File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Examples

Check File Before Using
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {

3 Defects

3-176

 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: TOCTOU
Impact: Medium
CWE ID: 367
CERT C ID: FIO01-C, FIO45-C, POS35-C

 File access between time of check and use (TOCTOU)

3-177

http://cwe.mitre.org/data/definitions/367.html
https://www.securecoding.cert.org/confluence/x/MwU
https://www.securecoding.cert.org/confluence/x/yQCQBw
https://www.securecoding.cert.org/confluence/x/ZgAI

See Also
Data race | Bad file access mode or status

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-178

File descriptor exposure to child process
Copied file descriptor used in multiple processes

Description
File descriptor exposure to child process occurs when a process is forked and the
child process uses file descriptors inherited from the parent process.

Risk

When you fork a child process, file descriptors are copied from the parent process, which
means that you can have concurrent operations on the same file. Use of the same file
descriptor in the parent and child processes can lead to race conditions that may not be
caught during standard debugging. If you do not properly manage the file descriptor
permissions and privileges, the file content is vulnerable to attacks targeting the child
process.

Fix

Check that the file has not been modified before forking the process. Close all inherited
file descriptors and reopen them with stricter permissions and privileges, such as read-
only permission.

Examples

File Descriptor Accessed from Forked Process
include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

 File descriptor exposure to child process

3-179

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

In this example, a file descriptor fd is created in read and write mode. The process is
then forked. The child process inherits and accesses fd with the same permissions as the
parent process. A race condition exists between the parent and child processes. The
contents of the file is vulnerable to attacks through the child process.

After you create the file descriptor, check the file for tampering. Then, close the inherited
file descriptor in the child process and reopen it in read-only mode.

3 Defects

3-180

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen
 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)
 {
 /* Handle error */
 abort();

 File descriptor exposure to child process

3-181

 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FILE_EXPOSURE_TO_CHILD
Impact: Medium
CWE ID: 362,
CERT C ID: POS38-C

See Also

Introduced in R2017b

3 Defects

3-182

https://cwe.mitre.org/data/definitions/362.html
https://www.securecoding.cert.org/confluence/x/ZQG7AQ

File manipulation after chroot() without
chdir("/")
Path-related vulnerabilities for file manipulated after call to chroot

Description
File manipulation after chroot() without chdir("/") detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir("/").

Risk

If you do not call chdir("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can still
manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix

After calling chroot, call chdir("/") to make your chroot jail more secure.

Examples

Open File in chroot-jail
#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;

 File manipulation after chroot() without chdir("/")

3-183

 chroot(root_path);
 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir("\") afterward. This example calls chdir("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CHROOT_MISUSE
Impact: Medium
CWE ID: 243
CERT C ID: POS05-C

See Also
Umask used with chmod-style arguments | Vulnerable path manipulation

3 Defects

3-184

http://cwe.mitre.org/data/definitions/243.html
https://www.securecoding.cert.org/confluence/x/bAL7

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 File manipulation after chroot() without chdir("/")

3-185

Float conversion overflow
Overflow when converting between floating point data types

Description
Float conversion overflow occurs when converting a floating point number to a
smaller floating point data type. If the variable does not have enough memory to
represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Converting from double to float
float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_CONV_OVFL
Impact: High
CWE ID: 197, 681

3 Defects

3-186

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/681.html

CERT C ID: FLP03-C, FLP34-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer conversion overflow | Unsigned integer conversion overflow |
Sign change integer conversion overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Float conversion overflow

3-187

https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/kgAV

Float division by zero
Dividing floating point number by zero

Description
Float division by zero occurs when the denominator of a division operation is a zero
and a floating point number.

Examples

Dividing a Floating Point Number by Zero
float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

3 Defects

3-188

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ZERO_DIV
Impact: High
CWE ID: 369
CERT C ID: FLP03-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer division by zero

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Float division by zero

3-189

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/4YHp

Introduced in R2013b

3 Defects

3-190

Float overflow
Overflow from operation between floating points

Description
Float overflow occurs when an operation on floating point variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Multiplication of Floats
#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 Float overflow

3-191

 return (double)val * (double)val;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: FLOAT_OVFL
Impact: Low
CWE ID: 682, 873
CERT C ID: FLP03-C, FLP06-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Unsigned integer overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-192

http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/YAAV

Format string specifiers and arguments mismatch
String specifiers do not match corresponding arguments

Description
Format string specifiers and arguments mismatch occurs when the parameters in
the format specification do not match their corresponding arguments. For example, an
argument of type unsigned long must have a format specification of %lu.

Examples

Printing a Float
#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

 Format string specifiers and arguments mismatch

3-193

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STRING_FORMAT
Impact: Low
CWE ID: 685, 686
CERT C ID: DCL10-C, DCL11-C, EXP37-C, FIO47-C, INT00-C, MSC15-C
ISO/IEC TS 17961 ID: argcomp, invfmtstr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites
Standard library output functions

3 Defects

3-194

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/QwA1
https://www.securecoding.cert.org/confluence/x/IwA_/
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/wQA1
https://www.securecoding.cert.org/confluence/x/FhE
https://www.securecoding.cert.org/confluence/x/EoLu
http://en.cppreference.com/w/cpp/io/c/fprintf

Introduced in R2013b

 Format string specifiers and arguments mismatch

3-195

Function called from signal handler not
asynchronous-safe
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global
data that might be in an inconsistent state.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.
_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()

3 Defects

3-196

alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()

 Function called from signal handler not asynchronous-safe

3-197

fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()
Functions not in the previous table are not asynchronous-safe, and should not be called
from a signal hander.

Examples

Call to printf() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }

3 Defects

3-198

}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler
catches another signal while printf() is executing, the behavior of the program is
undefined.

Use your signal handler to set only the value of a flag. e_flag is of type volatile
sig_atomic_t. sig_handler can safely access it asynchronously.

 Function called from signal handler not asynchronous-safe

3-199

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }

3 Defects

3-200

 free(info);
 info = NULL;
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE
Impact: Medium
CWE ID: 387, 479, 663, 828
CERT C ID: SIG30-C ERR32-C
ISO/IEC TS 17961 ID: asyncsig

See Also
Function called from signal handler not asynchronous-safe (strict) |
Return from computational exception signal handler | Shared data
access within signal handler | Signal call from within signal handler

Introduced in R2017b

 Function called from signal handler not asynchronous-safe

3-201

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At
https://www.securecoding.cert.org/confluence/x/NABl

Function called from signal handler not
asynchronous-safe (strict)
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global
data that might be in an inconsistent state.

When you select the checker Function called from signal handler not
asynchronous-safe, the checker detects calls to functions that are not asynchronous-
safe according to the POSIX standard. Function called from signal handler not
asynchronous-safe (strict) does not raise a defect for these cases. Function called
from signal handler not asynchronous-safe (strict) raises a defect for functions that
are asynchronous-safe according to the POSIX standard but not according to the C
standard.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

• abort()
• _Exit()

3 Defects

3-202

• quick_exit()
• signal()

Examples

Call to raise() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */

 Function called from signal handler not asynchronous-safe (strict)

3-203

 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler
catches another signal while raise() is executing, the behavior of the program is
undefined.

According to the C standard, the only functions that you can safely call from a signal
handler are abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{
 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }

3 Defects

3-204

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE_STRICT
Impact: Medium
CWE ID: 387, 479, 663, 828
CERT C ID: SIG30-C, ERR32-C
ISO/IEC TS 17961 ID: asyncsig

See Also
Function called from signal handler not asynchronous-safe | Shared
data access within signal handler | Signal call from within signal
handler

Introduced in R2017b

 Function called from signal handler not asynchronous-safe (strict)

3-205

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At
https://www.securecoding.cert.org/confluence/x/NABl

Function pointer assigned with absolute address
Constant expression is used as function address is vulnerable to code injection

Description
Function pointer assigned with absolute address looks for assignments to function
pointers. If the function pointer is assigned an absolute address, Bug Finder raises a
defect.

Bug Finder considers expressions with any combination of literal constants as an
absolute address. The one exception is when the value of the expression is zero.

Risk

Using a fixed address is not portable because it is possible the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute
arbitrary, possibly malicious, code.

Fix

Do not use an absolute address with function pointers.

Examples

Function Pointer Address Assignment
extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return (FuncPtr)0x08040000;
}

3 Defects

3-206

In this example, the function returns a function pointer to the address 0x08040000. If
an attacker knows this absolute address, an attacker can compromise your program.

One possible correction is to use the address of an existing function instead.

extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return &func0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FUNC_PTR_ABSOLUTE_ADDR
Impact: Low
CWE ID: 587

See Also

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Function pointer assigned with absolute address

3-207

http://cwe.mitre.org/data/definitions/587.html

Hard-coded buffer size
Size of memory buffer is a numerical value instead of symbolic constant

Description
Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk

Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore
maintenance costs. If a policy change requires developers to change the buffer size,
they must change every occurrence of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

3 Defects

3-208

Examples

Hard-Coded Buffer Size
int table[100];

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table is hard-coded.

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

int table_1[MAX_1];
int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off

 Hard-coded buffer size

3-209

Command-Line Syntax: HARD_CODED_BUFFER_SIZE
Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-210

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

Hard-coded loop boundary
Loop boundary is a numerical value instead of symbolic constant

Description
Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk

Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance
costs. If a policy change requires developers to change the loop boundary, they must
change every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic
names include const-qualified variables, enum constants or macros.enum constants are
recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

 Hard-coded loop boundary

3-211

const-qualified variables are usually known at run time.

Examples

Hard-Coded Loop Boundary
void performOperation(int);

void func(void) {
 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off

3 Defects

3-212

Command-Line Syntax: HARD_CODED_LOOP_BOUNDARY
Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Hard-coded loop boundary

3-213

http://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

Hard-coded object size used to manipulate memory
Memory manipulation with hard-coded size instead of sizeof

Description
Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk

If you hard code object size, your code is not portable to architectures with different type
sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix

For the size argument of memory functions, use sizeof(object).

Examples

Assume 4-Byte Integer Pointers
#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

 s = 4;

3 Defects

3-214

 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

In this example, the memory allocation function calloc is called with a memory size of
4. The memory is allocated for an integer pointer, which can be a more or less than 4
bytes depending on your target. If the integer pointer is not 4 bytes, your program can
fail.

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off

 Hard-coded object size used to manipulate memory

3-215

Command-Line Syntax: HARD_CODED_MEM_SIZE
Impact: Low
CWE ID: 805
CERT C ID: EXP09-C

Introduced in R2016b

3 Defects

3-216

http://cwe.mitre.org/data/definitions/805.html
https://www.securecoding.cert.org/confluence/x/eAAV

Host change using externally controlled elements
Changing host ID from an unsecure source

Description
Host change using externally controlled elements detects uncontrolled arguments
in calls to routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows).

Risk

The tainted host ID value can allow external control of system settings. This control can
disrupt services, cause unexpected application behavior, or cause other malicious
intrusions.

Fix

Use caution when changing or editing the host ID. Do not allow user-provided values to
control sensitive data.

Examples

Change Host ID from Function Argument
#include <unistd.h>

void bug_taintedhostid(long userhid) {
 sethostid(userhid);
}

This example sets a new host ID using the argument passed to the function. Before using
the host ID, check the value passed in.

 Host change using externally controlled elements

3-217

One possible correction is to change the host ID to a predefined ID. This example uses
the host argument as a switch variable to choose between the different, predefined host
IDs.

#include <unistd.h>

extern long called_taintedhostid_sanitize(long);
enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(int host) {

 long hid = 0;
 switch(host) {
 case HI0:
 hid = 0x7f0100;
 break;
 case HI1:
 hid = 0x7f0101;
 break;
 case HI2:
 hid = 0x7f0102;
 break;
 case HI3:
 hid = 0x7f0103;
 break;
 default:
 /* do nothing */
 break;
 }
 if (hid > 0) {
 sethostid(hid);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_HOSTID
Impact: Medium

3 Defects

3-218

CWE ID: 15
CERT C ID: API00-C

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Command executed from externally controlled path
| Library loaded from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Host change using externally controlled elements

3-219

http://cwe.mitre.org/data/definitions/15.html
https://www.securecoding.cert.org/confluence/x/egAV

Improper array initialization
Incorrect array initialization when using initializers

Description
Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to
establish correspondence between an array element and an array initializer element. For
instance, the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to
int arr[6] = { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.
Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the
array size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces
enclosing initializer values
incorrectly.

Because of the incorrect
placement of braces, some
array initializer elements
are not used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

3 Defects

3-220

Issue Risk Possible Fix
In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization of
the first array element
indicates a possible coding
error. You possibly
overlooked the fact that
array indexing starts from
0.

Initialize all elements
explicitly.

In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers
in the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Examples

Incorrectly Placed Braces (C Only)

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer
contains {5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

One possible correction is to place the braces correctly so that all elements are explicitly
initialized.

 Improper array initialization

3-221

int a1[2][3]
= {{1, 2, 3},
 {4, 5, 6}
};

First Element Not Explicitly Initialized
int arr[5]
= {
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer
did not consider that the array indexing starts from 0.

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Element Initialized Twice
int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

3 Defects

3-222

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr[3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr[3] when arr[2] was initialized a second time.

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Mix of Designated and Nondesignated Initializers
int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

In this example, because a mix of designated and nondesignated initializers are used, it
is difficult to determine the size of arr by inspection.

One possible correction is to use only designated initializers for array initialization.

int arr[]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

 Improper array initialization

3-223

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: IMPROPER_ARRAY_INIT
Impact: Medium
CWE ID: 665
CERT C ID: ARR00-C, ARR02-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-224

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/HQEOAQ

Incompatible types prevent overriding
Derived class method hides a virtual base class method instead of overriding it

Description
Incompatible types prevent overriding occurs when a derived class method has the
same name and number of parameters as a virtual base class method but:

• Differ in at least one parameter type.
• Differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk
Risks include the following:

• If you intend that the derived class method must override the base class method, the
overriding does not occur.

• Because the base class method is hidden, you cannot use a derived class object to call
the method. If you use a derived class object to call the method with the base class
parameters, the derived class method is called instead. For the parameters whose
types do not match the arguments that you pass, a cast takes place if possible.
Otherwise, a compilation failure occurs.

Fix
Possible solutions include the following:

• If you want the derived class method to override the base class method, change the
interface of the derived class method.

For instance, change the parameter type or add a const qualifier if required.
• Otherwise, add the line using Base_class_name::method_name to the derived

class declaration. In this way, you can access the base class method using an object of
the derived class.

 Incompatible types prevent overriding

3-225

Examples

typedef Causing Virtual Function Hiding in Derived Class

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

In this example, because of the statement typedef double Float;, the Derived class
methods func, funcp and funcr have double arguments while the Base class methods
with the same name have float arguments.

Therefore, you cannot access the Base class methods using a Derived class object.

The defect appears on the method that hides a base class method. To find which base
class method is hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as
the derived class method name.

One possible correction is to use the same argument type for the base and derived class
methods to enable overriding. Otherwise, if you want to call the Base class methods with

3 Defects

3-226

the float arguments using a Derived class object, add the line using
Base::method_name to the Derived class declaration.
class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 using Base::func;
 using Base::funcp;
 using Base::funcr;
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

const Qualifier Missing in Derived Class Method
namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) ;

} ;
}

In this example, Derived::func does not have a const qualifier but Base::func does.
Therefore, Derived::func does not override Base::func.

 Incompatible types prevent overriding

3-227

To enable overriding, add the const qualifier to the derived class method declaration.

namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) const;

} ;
}

Value Instead of Reference in Derived Class Method
namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj o) ;

} ;
}

In this example, Derived::func accepts an Obj parameter by value but Base::func
accepts an Obj parameter by reference. Therefore, Derived::func does not override
Base::func.

To enable overriding, pass the derived class method parameter by reference.

3 Defects

3-228

namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj& o) ;

} ;
}

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: VIRTUAL_FUNC_HIDING
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Incompatible types prevent overriding

3-229

Inconsistent cipher operations
Encryption and decryption steps occur in succession with the same cipher context
without a reinitialization in between

Description
Inconsistent cipher operations occurs when you perform an encryption and
decryption step with the same cipher context. You do not reinitalize the context in
between those steps.

For instance, you set up a cipher context for decryption using EVP_DecryptInit_ex.

EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

However, you use the context for encryption using EVP_EncryptUpdate.

EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

Risk

Mixing up encryption and decryption steps can lead to obscure code. It is difficult to
determine at a glance whether the current cipher context is used for encryption or
decryption. The mixup can also lead to race conditions, failed encryption, and unexpected
ciphertext.

Fix

After you set up a cipher context for a certain family of operations, use the context for
only that family of operations.

For instance, if you set up a cipher context for decryption using EVP_DecryptInit_ex,
use the context afterward for decryption only.

3 Defects

3-230

Examples

Encryption Step Following Decryption Step

#include <openssl/evp.h>
#include <stdlib.h>

/* Using the cryptographic routines */

unsigned char *out_buf;
int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];
void func(unsigned char* src, int len) {

 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for decryption*/
 EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher context ctx is set up for decryption using
EVP_DecryptInit_ex. However, immediately afterward, the context is used for
encryption using EVP_EncryptUpdate.

One possible correction is to change the setup step. If you want to use the cipher context
for encryption, set it up using EVP_EncryptInit_ex.

#include <openssl/evp.h>
#include <stdlib.h>

unsigned char *out_buf;
int out_len;

 Inconsistent cipher operations

3-231

unsigned char g_key[16];
unsigned char g_iv[16];

void func(unsigned char* src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for encryption*/
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_BAD_FUNCTION
Impact: Medium
CWE ID: 372, 664

Introduced in R2017a

3 Defects

3-232

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Incorrect order of network connection operations
Socket is not correctly established due to bad order of connection steps or missing steps

Description
Incorrect order of network connection operations occurs when you perform
operations on a network connection at the wrong point of the connection lifecycle.

Risk

Sending or receiving data to an incorrectly connected socket can cause unexpected
behavior or disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can
send sensitive data to an unexpected port. You can also get unexpected data from an
incorrect socket.

Fix

During socket connection and communication, check the return of each call and the
length of the data.

Before reading, writing, sending, or receiving information, create sockets in this order:

• For a connection-oriented server socket (SOCK_STREAM or SOCK_SEQPACKET):

socket(...);
bind(...);
listen(...);
accept(...);

• For a connectionless server socket (SOCK_DGRAM):

socket(...);
bind(...);

• For a client socket (connection-oriented or connectionless):

 Incorrect order of network connection operations

3-233

socket(...);
connect(...);

Examples

Connecting a Connection-Oriented Server Socket
include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

3 Defects

3-234

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(listenfd, sendBuff, strlen(sendBuff));

 close(connfd);
 sleep(1);
 }
}

This example creates a connection-oriented network connection. The function calls the
correct functions in the correct order: socket, bind, listen, accept. However, the
program should write to the connfd socket instead of the listenfd socket.

One possible correction is to write to the connfd function instead of the listenfd
socket.

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server_good(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 Incorrect order of network connection operations

3-235

 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);
 write(connfd, sendBuff, strlen(sendBuff));
 close(connfd);
 sleep(1);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_NETWORK_CONNECT_ORDER
Impact: Medium
CWE ID: 666

See Also

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-236

http://cwe.mitre.org/data/definitions/666.html

Incorrect pointer scaling
Implicit scaling in pointer arithmetic might be ignored

Description
Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.
Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is
already implicitly scaled by
the size of the data type of
the pointed variable.
Therefore, the use of
sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

 Incorrect pointer scaling

3-237

Examples

Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Cast Following Pointer Arithmetic
int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

3 Defects

3-238

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: BAD_PTR_SCALING
Impact: Medium
CWE ID: 468
CERT C ID: ARR39-C, EXP08-C
ISO/IEC TS 17961 ID: libptr

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Incorrect pointer scaling

3-239

http://cwe.mitre.org/data/definitions/468.html
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg

Integer conversion overflow
Overflow when converting between integer types

Description
Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original constant, the
conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char
char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

3 Defects

3-240

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_CONV_OVFL
Impact: High
CWE ID: 190, 191, 197
CERT C ID: FLP34-C, INT02-C, INT12-C, INT18-C, INT31-C

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign
change integer conversion overflow | Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Integer conversion overflow

3-241

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/197.html
https://www.securecoding.cert.org/confluence/x/kgAV
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/RAE
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE

Integer division by zero
Dividing integer number by zero

Description
Integer division by zero occurs when the denominator of a division or modulo
operation is zero.

Examples

Dividing an Integer by Zero
int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

3 Defects

3-242

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Modulo Operation with Zero
int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)

 Integer division by zero

3-243

 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_ZERO_DIV
Impact: High
CWE ID: 369
CERT C ID: INT33-C
ISO/IEC TS 17961 ID: diverr

3 Defects

3-244

http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/cAI

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float division by zero on page 3-188

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Integer division by zero

3-245

Integer overflow
Overflow from operation between integers

Description
Integer overflow occurs when an operation on integer variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the
value of var is the maximum integer value, so an int cannot represent one plus the
maximum integer value.

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

3 Defects

3-246

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_OVFL
Impact: Medium
CWE ID: 190, 191
CERT C ID: INT00-C, INT08-C, INT18-C, INT32-C, MSC15-C
ISO/IEC TS 17961 ID: intoflow

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unsigned integer overflow | Float overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Integer overflow

3-247

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
https://www.securecoding.cert.org/confluence/x/FhE
https://www.securecoding.cert.org/confluence/x/JA4
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/EoLu

Invalid assumptions about memory organization
Address is computed by adding or subtracting from address of a variable

Description
Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Examples

Reliance on Memory Organization
void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

3 Defects

3-248

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_MEMORY_ASSUMPTION
Impact: Medium
CWE ID: 188
CERT C ID: ARR37-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Invalid assumptions about memory organization

3-249

http://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/UgHm

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description
Invalid deletion of pointer occurs when a block of memory released using the delete
operator was not previously allocated with the new operator.

This defect applies only to C++ source files.

Examples

Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a
memory location that was not dynamically allocated.

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)

3 Defects

3-250

 *(ptr+i)=1;
}

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5].
However, p_scale is deleted with delete instead of delete[]. The new-delete pair
does not match. Do not use delete without the brackets when deleting arrays.

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

 Invalid deletion of pointer

3-251

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Check Information
Group: Dynamic memory
Language: C++
Default: Off
Command-Line Syntax: BAD_DELETE
Impact: High
CWE ID: 404

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid free of pointer | Memory leak

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-252

http://cwe.mitre.org/data/definitions/404.html

Invalid file position
fsetpos() is invoked with a file position argument not obtained from fgetpos()

Description
Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of
fsetpos(FILE *stream, const fpos_t *pos), you might access an unintended
location in the stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Examples

memset() Sets File Position Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {

 Invalid file position

3-253

 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

3 Defects

3-254

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_FILE_POS
Impact: Medium
CERT C ID: FIO44-C
ISO/IEC TS 17961 ID: xfilepos

See Also

Introduced in R2017b

 Invalid file position

3-255

https://www.securecoding.cert.org/confluence/x/igAV

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description
Invalid free of pointer occurs when a block of memory released using the free
function was not previously allocated using malloc, calloc, or realloc.

Examples

Invalid Free of Pointer Error
#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)

3 Defects

3-256

 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: Dynamic Memory
Language: C | C++
Default: On
Command-Line Syntax: BAD_FREE
Impact: High
CWE ID: 404, 590, 762
CERT C ID: MEM00-C, MEM34-C
ISO/IEC TS 17961 ID: xfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid deletion of pointer

 Invalid free of pointer

3-257

http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/762.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/wQE

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-258

Invalid use of == operator
Equality operation in assignment statement

Description
Invalid use of == operator occurs when an equality operator instead of an assignment
operator is used in a simple statement. A common correction is removing one of the equal
signs (=).

Examples

Equality Evaluation in for-Loop
void populate_array(void)
{
 int i = 0;
 int j = 0;
 int array[4];

 for (j == 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of
setting j to 5. The for-loop iterates from 0 to 8 because j starts with a value of 0, not 5.
A by-product of the invalid equality operator is an out-of-bounds array access in the next
line.

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.
void populate_array(void)
{

 Invalid use of == operator

3-259

 int i = 0;
 int j = 0;
 int array[4];

 for (j = 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_EQUAL_USE
Impact: High
CWE ID: 482

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of = operator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-260

http://cwe.mitre.org/data/definitions/482.html

Invalid use of = operator
Assignment in conditional statement

Description
Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk
• Conditional statement tests the wrong values— The single equal sign operation

assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix
• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve

readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

Examples

Single Equal Sign Inside an if Condition
#include <stdio.h>

 Invalid use of = operator

3-261

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.
#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.
#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

3 Defects

3-262

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_USE
Impact: Medium
CWE ID: 481
CERT C ID: EXP45-C
ISO/IEC TS 17961 ID: boolasgn

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of == operator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Invalid use of = operator

3-263

http://cwe.mitre.org/data/definitions/481.html
https://www.securecoding.cert.org/confluence/x/nYFtAg

Introduced in R2013b

3 Defects

3-264

Floating point comparison with equality operators
Imprecise comparison of floating-point variables

Description
Floating point comparison with equality operators occurs when you use an
equality (==) or inequality (!=) operation with floating-point numbers. It is possible that
the equality or inequality of two floating-point values is not exact because floating-point
representation can be imprecise.

Polyspace does not raise a defect for an equality or inequality operation with floating-
point numbers when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite,
reasonably small number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;
default: x = 3.5; break; }
…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer
values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
…
if (random) break;

 Floating point comparison with equality operators

3-265

}

if (3*x+4==2*x-1)
…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-
on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane.
See Other.

At the command line, add the flag to your analysis command.

polyspace-bug-finder-nodesktop -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Examples

Floats Inequality in for-loop

#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping
mechanism. The number of iterations is difficult to determine, or might be infinite,
because of the imprecision in floating-point representation.

3 Defects

3-266

One possible correction is to use a different operator that is not as strict. For example, an
inequality like >= or <=.

#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

Check Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FLOAT_OP
Impact: Medium
CWE ID: 873
CERT C ID: FLP02-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Floating point comparison with equality operators

3-267

http://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/DgU

Invalid use of standard library floating point routine
Wrong arguments to standard library function

Description
Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,
asinh, atanh

Examples

Arc Cosine Operation
#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree,
is outside this range.

3 Defects

3-268

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 873
CERT C ID: FLP03-C, FLP32-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of
standard library memory routine | Invalid use of standard library
string routine | Invalid use of standard library routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Invalid use of standard library floating point routine

3-269

http://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/rgQ

Invalid use of standard library integer routine
Wrong arguments to standard library function

Description
Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Examples

Absolute Value of Large Negative
#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

3 Defects

3-270

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 872
ISO/IEC TS 17961 ID: chrsgnext

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library floating point routine | Invalid use
of standard library memory routine | Invalid use of standard library
string routine | Invalid use of standard library routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Invalid use of standard library integer routine

3-271

http://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html

Introduced in R2013b

3 Defects

3-272

Invalid use of standard library memory routine
Standard library memory function called with invalid arguments

Description
Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments.

Examples

Invalid Use of Standard Library Memory Routine Error
#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

 Invalid use of standard library memory routine

3-273

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: MEM_STD_LIB
Impact: High
CWE ID: 120, 227
CERT C ID: API00-C, ARR38-C, ARR39-C, EXP08-C, EXP34-C, MSC15-C
ISO/IEC TS 17961 ID: nullref, libptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-274

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu

Invalid use of standard library routine
Wrong arguments to standard library function

Description
Invalid use of standard library routine occurs when you use invalid arguments with
a function from the standard library. This defect picks up errors related to other
functions not covered by float, integer, memory, or string standard library routines.

Examples

Calling printf Without a String
#include <stdio.h>
#include <stdlib.h>

void print_null(void) {

 printf(NULL);
}

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

One possible correction is to change the input arguments to fit the requirements of the
standard library routine. In this example, the input argument was changed to a
character.

#include <stdio.h>

void print_null(void) {
 char zero_val = '0';
 printf((const char*)zero_val);
}

 Invalid use of standard library routine

3-275

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OTHER_STD_LIB
Impact: High
CWE ID: 227
CERT C ID: API00-C, MSC15-C
ISO/IEC TS 17961 ID: strmod

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of
standard library floating point routine | Invalid use of standard
library memory routine | Invalid use of standard library string
routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-276

https://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EoLu

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description
Invalid use of standard library string routine occurs when a string library function
is called with invalid arguments.

Examples

Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)

 Invalid use of standard library string routine

3-277

 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_STD_LIB
Impact: High
CWE ID: 120, 227
CERT C ID: API00-C, ARR33-C, ARR38-C, MEM30-C, MSC15-C, STR31-C, STR32-C,
STR35-C
ISO/IEC TS 17961 ID: accfree, nullref, libptr, nonnullcs, taintformatio

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library memory routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-278

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/227.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/vAE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/KgE

Invalid va_list argument
Variable argument list used after invalidation with va_end or not initialized with
va_start or va_copy

Description
Invalid va_list argument occurs when you use a va_list variable as an argument to
a function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk

The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

Fix

Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

 Invalid va_list argument

3-279

Examples

va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

3 Defects

3-280

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_VA_LIST_ARG
Impact: High
CWE ID: 628
CERT C ID: MSC39-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Invalid va_list argument

3-281

http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/VwCMAg

Large pass-by-value argument
Large argument passed by value between functions

Description
Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value. For variables larger than 64 bytes, pass the value
by pointer or by reference to save stack space and copy time.

In C code, when a function returns by value, the return value is copied to the caller.
Therefore, this defect appears on functions that have large return values. In C++ code, if
a function return value is of class type, under certain conditions, the standard allows
compilers to avoid copying the return value (C++98: Section 12.8, Item 15; C++11:
Section 12.8, Item 31). Most compilers do not perform a copy in such cases. This behavior
is called return value optimization. In such cases, Polyspace Bug Finder does not produce
this defect if a large object is returned by value.

Examples

Large Function Argument
typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid first) {
 return first.name[0];
}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

3 Defects

3-282

One possible correction is to pass the argument by reference instead of by value. In this
corrected example, the pointer to a userid structure is passed instead of the actual
structure.

typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid *first) {
 return (*first).name[0];
}

Large Function Return Value
#include <stdlib.h>

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

userId* getAddress(void);
assignValues(char*, int*);

userId username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return *newId;
}

In this example, the function username returns a large structure *newId by value.
When a function calls username, the value in *newId is copied to the caller.

One possible correction is to return the large structure by reference. In this corrected
example, the pointer to structure newId is returned from the function username.

#include <stdlib.h>

 Large pass-by-value argument

3-283

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

userId* getAddress(void);
assignValues(char*, int*);

userId * username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return newId;
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: PASS_BY_VALUE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-284

Library loaded from externally controlled path
Using a library argument from an externally controlled path

Description
Library loaded from externally controlled path looks for libraries loaded from fixed
or controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and

capabilities to the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

Examples

Call Custom Library
#include <stdlib.h>
#include <stdio.h>

 Library loaded from externally controlled path

3-285

#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment
variable. The actual library you load could be a different library from the one that you
intend.

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

3 Defects

3-286

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_LIB
Impact: Medium
CWE ID: 114, 426
CERT C ID: API00-C, STR02-C, WIN00-C

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Command executed from externally
controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Library loaded from externally controlled path

3-287

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/-AY
https://www.securecoding.cert.org/confluence/x/NYDiBg

Introduced in R2015b

3 Defects

3-288

Line with more than one statement
Multiple statements on a line

Description
Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Examples

Single-Line Initialization
int multi_init(void){
_ int abc = 4; int efg = 0; //defect

 return abc*efg;
}

In this example, abc and efg are initialized on the second line of the function as
separate statements.

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.
int multi_init(void){
 int a = 4, b = 0;

 return a*b;
}

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.
int multi_init(void){
 int a = 4;

 Line with more than one statement

3-289

 int b = 0;

 return a*b;
}

Single-Line Loops
int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

_ for(b=0; b < 3; b++) {a+=b; index=b;} //defect

_ while (index < 7) {index++; tab[index] = index * index;} //defect
 return a*b;
}

In this example, there are three loops coded on single lines, each with multiple
semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

• Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

 for(b=0; b < 3; b++){
 a+=b;

3 Defects

3-290

 index=b;
 }

 while (index < 7){
 index++;
 tab[index] = index * index;
 }
 return a*b;
}

Single-line Conditionals
int multi_if(void){

 int a, b = 1;
 if(a == 0) { a++;} // no defect
_ else if(b == 1) {b++; a *= b;} //defect
}

In this example, there are two conditional statements an: if and an else if. The if
line does not raise a defect because only one statement follows the condition. The else
if statement does raise a defect because two statements follow the condition.

One possible correction is to use a new line for conditions with multiple statements.

int multi_if(void){
 int a, b = 1;

 if(a == 0) a++;
 else if(b == 1){
 b++;
 a *= b;
 }
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: MORE_THAN_ONE_STATEMENT

 Line with more than one statement

3-291

Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-292

Load of library from a relative path can be
controlled by an external actor
Library loaded with relative path is vulnerable to malicious attacks

Description
Load of library from a relative path can be controlled by an external actor
detects library loading routines that load an external library. If you load the library
using a relative path or no path, Bug Finder flags the loading routine as a defect.

Risk

By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix

When you load an external library, specify the full path.

Examples

Open Library with Library Name
#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

 Load of library from a relative path can be controlled by an external actor

3-293

In this example, dlopen opens the liberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_LIB
Impact: Medium
CWE ID: 114, 427
CERT C ID: WIN00-C

See Also
Execution of a binary from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Library loaded from
externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3 Defects

3-294

http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/427.html
https://www.securecoding.cert.org/confluence/x/NYDiBg

Introduced in R2015b

 Load of library from a relative path can be controlled by an external actor

3-295

Loop bounded with tainted value
Loop controlled by a value from an unsecure source

Description
Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values.

Examples

Loop Boundary From Input Argument
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

3 Defects

3-296

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;

 if (count>0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_LOOP_BOUNDARY
Impact: Medium
CWE ID: 606
CERT C ID: INT04-C, MSC21-C
ISO/IEC TS 17961 ID: taintsink

See Also
Array access with tainted index | Pointer dereference with tainted
offset

 Loop bounded with tainted value

3-297

http://cwe.mitre.org/data/definitions/606.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/EwDJAQ

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-298

Member not initialized in constructor
Constructor does not initialize some members of a class

Description
Non-initialized member occurs when a class constructor has at least one execution
path on which it does not initialize some data members of the class.

The defect does not appear in the following cases:

• Empty constructors.
• The non-initialized member is not used in the code.

Risk

The members that the constructor does not initialize can have unintended values when
you read them later.

Initializing all members in the constructor makes it easier to use your class. If you call a
separate method to initialize your members and then read them, you can avoid
uninitialized values. However, someone else using your class can read a class member
before calling your initialization method. Because a constructor is called when you create
an object of the class, if you initialize all members in the constructor, they cannot have
uninitialized values later on.

Fix

The best practice is to initialize all members in your constructor, preferably in an
initialization list.

 Member not initialized in constructor

3-299

Examples

Non-Initialized Member
class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 }
}

In this example, if flag is not 0, the member _c is not initialized.

The defect appears on the closing brace of the constructor. Following are some tips for
navigating in the source code:

• On the Result Details pane, see which members are not initialized.
• To navigate to the class definition, right-click a member that is initialized in the

constructor. Select Go To Definition. In the class definition, you can see all the
members, including those members that are not initialized in the constructor.

One possible correction is to initialize all members of the class MyClass for all values of
flag.

class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;

3 Defects

3-300

};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 _c = 'b';
 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: NON_INIT_MEMBER
Impact: Medium
CWE ID: 456, 457, 908
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Member not initialized in constructor

3-301

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html

Memory allocation with tainted size
Size argument to memory function is from an unsecure source

Description
Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Examples

Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

3 Defects

3-302

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_MEMORY_ALLOC_SIZE
Impact: Medium
CWE ID: 789
CERT C ID: API00-C, ARR32-C, INT04-C, MEM07-C, MEM10-C, MEM11-C, MEM35-C
ISO/IEC TS 17961 ID: taintsink

See Also
Unprotected dynamic memory allocation

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Memory allocation with tainted size

3-303

http://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/eQo
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/GwI
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/2wE

Introduced in R2015b

3 Defects

3-304

Memory comparison of padding data
memcmp compares data stored in structure padding

Description
Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

Risk

If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

 Memory comparison of padding data

3-305

Fix
Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use
this function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Examples

Structures Compared with memcmp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {

3 Defects

3-306

 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the
comparison can show an inequality if the meaningless values in the padding bytes are
not the same.

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 Memory comparison of padding data

3-307

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_PADDING_DATA
Impact: Medium
CWE ID: 188
CERT C ID: EXP42-C
ISO/IEC TS 17961 ID: padcomp

See Also
Polyspace Results
Memory comparison of strings

Introduced in R2017a

3 Defects

3-308

https://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/CoDYBg

Memory comparison of strings
memcmp compares data stored in strings after the null terminator

Description
Memory comparison of strings occurs when:

• You compare two strings byte-by-byte with the memcmp function.
• The number of bytes compared is such that you compare meaningless data stored

after the null terminator.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes in the string after the null terminator.

Risk

The null terminator signifies the end of a string. Comparison of bytes after the null
terminator is meaningless. You might reach the false conclusion that two strings are not
equal, even if the bytes before the null terminator store the same value.

Fix

Use strcmp for string comparison. The function compares strings only up to the null
terminator.

If you use memcmp for a byte-by-byte comparison of two strings, avoid comparison of bytes
after the null terminator. Determine the number of bytes to compare by using the
strlen function.

 Memory comparison of strings

3-309

Examples

Strings Compared with memcmp
#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, sizeof(s1));
}

In this example, sizeof returns the length of the entire array s1, which is 20. However,
only the first three bytes of the string are relevant.

Even though s1 and s2 hold the same value, the comparison with memcmp can show a
false inequality.

One possible correction is to determine the number of bytes to compare using the strlen
function. strlen returns the number of bytes before the null terminator (and excluding
the null terminator itself).

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, strlen(s1));
}

3 Defects

3-310

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_STRINGS
Impact: Medium
CWE ID: 188

See Also
Polyspace Results
Memory comparison of padding data

Introduced in R2017a

 Memory comparison of strings

3-311

http://cwe.mitre.org/data/definitions/188.html

Memory leak
Memory allocated dynamically not freed

Description
Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Examples

Pointer with Dynamic Memory
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

3 Defects

3-312

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

 Memory leak

3-313

Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

Check Information
Group: Dynamic memory

3 Defects

3-314

Language: C | C++
Default: Off
Command-Line Syntax: MEM_LEAK
Impact: Medium
CWE ID: 401, 404
CERT C ID: MEM11-C, MEM12-C, MEM31-C
ISO/IEC TS 17961 ID: fileclose

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Memory leak

3-315

http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/8AG7AQ
https://www.securecoding.cert.org/confluence/x/vQE

Mismatched alloc/dealloc functions on Windows
Improper deallocation function causes memory corruption issues

Description
Mismatched alloc/dealloc functions on Windows occurs when you use a Windows
deallocation function that is not properly paired to its corresponding allocation function.

Risk

Deallocating memory with a function that does not match the allocation function can
cause memory corruption or undefined behavior. If you are using an older version of
Windows, the improper function can also cause compatibility issues with newer versions.

Fix

Properly pair your allocation and deallocation functions according to the functions listed
in this table.
Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()
_malloca() _freea()
LocalAlloc() LocalFree()

3 Defects

3-316

Allocation Function Deallocation Function
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

Examples

Memory Deallocated with Incorrect Function
#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

 if (p) {
 /* Memory deallocation. */

 Mismatched alloc/dealloc functions on Windows

3-317

 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then
erroneously uses GlobalFree() to deallocate the memory.

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the
memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off

3 Defects

3-318

Command-Line Syntax: WIN_MISMATCH_DEALLOC
Impact: Low
CWE ID: 404, 762
CERT C ID: WIN30-C

See Also
Invalid deletion of pointer | Invalid free of pointer

Introduced in R2017b

 Mismatched alloc/dealloc functions on Windows

3-319

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/FwD_Bg

Mismatch between data length and size
Data size argument is not computed from actual data length

Description
Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a
new location. If the extra memory contains sensitive information, the attacker can now
access that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

Examples

Copy Buffer of Data
#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;

3 Defects

3-320

 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable
is not related to data+2.

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 Mismatch between data length and size

3-321

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DATA_LENGTH_MISMATCH
Impact: Medium
CWE ID: 130, 240
CERT C ID: ARR38-C

See Also
Copy of overlapping memory

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-322

http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/240.html
https://www.securecoding.cert.org/confluence/x/EYCGB

Missing block cipher initialization vector
Non-NULL initialization vector is not associated with the cipher context for encryption or
decryption

Description
Missing block cipher initialization vector occurs when you encrypt or decrypt data
using a NULL initialization vector (IV).

Note You can initialize your cipher context with a NULL initialization vector (IV).
However, if your algorithm requires an IV, before the encryption or decryption step, you
must associate the cipher context with a non-NULL IV.

Risk

Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If
you use a NULL IV, your encrypted data is vulnerable to such attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a NULL IV, you get the same ciphertext
when encrypting the same plaintext. Your data becomes vulnerable to dictionary attacks.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL initialization vector.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

 Missing block cipher initialization vector

3-323

Examples

NULL Initialization Vector Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, NULL);

 /* Update step with NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the initialization vector associated with the cipher context ctx is NULL.
If you use this context to encrypt your data, your data is vulnerable to dictionary attacks.

Use a strong random number generator to produce the initialization vector. The
corrected code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){

3 Defects

3-324

 if (key == NULL)
 fatal_error();
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_IV
Impact: Medium
CWE ID: 310, 326, 329

Introduced in R2017a

 Missing block cipher initialization vector

3-325

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

Missing break of switch case
No comments at the end of switch case without a break statement

Description
Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples

Switch Without Break Statements
enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)

3 Defects

3-326

{
 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();

 Missing break of switch case

3-327

 break;
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_BREAK
Impact: Low
CWE ID: 484
CERT C ID: MSC17-C

See Also
Missing case for switch condition

Introduced in R2016b

3 Defects

3-328

http://cwe.mitre.org/data/definitions/484.html
https://www.securecoding.cert.org/confluence/x/YIFLAQ

Missing byte reordering when transferring data
Different endianness of host and network

Description
Missing byte reordering when transferring data occurs when you do not use a byte
ordering function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk

Some system architectures implement little endian byte ordering (least significant byte
first), and other systems implement big endian (most significant byte first). If the
endianness of the sent data does not match the endianness of the receiving system, the
value returned when reading the data is incorrect.

Fix

After receiving data from a socket, use a byte ordering function such as ntohl(). Before
sending data to a socket, use a byte ordering function such as htonl() .

Examples

Data Transferred Without Byte Reordering
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>

 Missing byte reordering when transferring data

3-329

#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a
network to the client from the server. If the server host is little endian and the network
is big endian, num is transferred as 0x17000000. The client then reads an incorrect
value for num and compares it to a local numeric value.

3 Defects

3-330

Before sending num from the server host, use htonl() to convert from host to network
byte ordering. Similarly, before reading num on the client host, use ntohl() to convert
from network to host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)
 {
 return 255;
 }
 else

 Missing byte reordering when transferring data

3-331

 {
 return num;
 }
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_BYTESWAP
Impact: Medium
CWE ID: 188, 198
CERT C ID: POS39-C

See Also

Introduced in R2017b

3 Defects

3-332

http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/198.html
https://www.securecoding.cert.org/confluence/x/IgDAAQ

Missing case for switch condition
switch variable not covered by cases and default case is missing

Description
Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate
the normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value,
the resulting behavior can be anticipated.

Examples

Missing Default Condition
#include <stdio.h>
#include <string.h>

typedef enum E

 Missing case for switch condition

3-333

{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

3 Defects

3-334

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Result Information
Group: Security

 Missing case for switch condition

3-335

Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_CASE
Impact: Low
CWE ID: 478
CERT C ID: MSC01-C, MSC07-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-336

http://cwe.mitre.org/data/definitions/478.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy

Missing cipher algorithm
An encryption or decryption algorithm is not associated with the cipher context

Description
Missing cipher algorithm occurs when you do not assign a cipher algorithm when
setting up your cipher context.

You can initialize your cipher context without an algorithm. However, before you encrypt
or decrypt your data, you must associate the cipher context with a cipher algorithm.

Risk

A missing cipher algorithm can lead to run-time errors or at least, non-secure ciphertext.

Before encryption or decryption, you set up a cipher context that has the information
required for encryption: the cipher algorithm and mode, an encryption or decryption key
and an initialization vector (for modes that require initialization vectors).

ret = EVP_EncryptInit(&ctx, EVP_aes_128_cbc(), key, iv)

The function EVP_aes_128_cbc() specifies that the Advanced Encryption Standard
(AES) algorithm must be used for encryption. The function also specifies a block size of
128 bits and the Cipher Bloch Chaining (CBC) mode.

Instead of specifying the algorithm, you can use NULL in the initialization step.
However, before using the cipher context for encryption or decryption, you must perform
an additional initialization that associates an algorithm with the context. Otherwise, the
update steps for encryption or decryption can lead to run-time errors.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with an algorithm.

 Missing cipher algorithm

3-337

ret = EVP_EncryptInit(ctx, EVP_aes_128_cbc(), key, iv)

Examples

Algorithm Missing During Context Initialization

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv);
}

In this example, an algorithm is not provided when the cipher context ctx is initialized.

Before you encrypt or decrypt your data, you have to provide a cipher algorithm. If you
perform a second initialization to provide the algorithm, the cipher context is completely
re-initialized. Therefore, the current initialization statement using
EVP_EncryptInit_ex is redundant.

One possible correction is to provide an algorithm when you initialize the cipher context.
In the corrected code below, the routine EVP_aes_128_cbc invokes the Advanced
Encryption Standard (AES) algorithm. The routine also specifies a block size of 128 bits
and the Cipher Block Chaining (CBC) mode for encryption.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];

3 Defects

3-338

void func(unsigned char *src, int len, unsigned char *out_buf, int out_len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_ALGORITHM
Impact: Medium
CWE ID: 310, 573

Introduced in R2017a

 Missing cipher algorithm

3-339

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/573.html

Missing cipher data to process
Final encryption or decryption step is performed without previous update steps

Description
Missing cipher data to process occurs when you perform the final step of a block
cipher encryption or decryption incorrectly.

For instance, you do one of the following:

• You do not perform update steps for encrypting or decrypting the data before
performing a final step.
/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Missing update step */
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform consecutive final steps without intermediate initialization and update
steps.
/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
...
/* Missing initialization and update */
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform a cleanup of the cipher context and then perform a final step.
/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

3 Defects

3-340

...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

Risk

Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you perform the final step before performing the update steps, or perform the final step
when there is no data to process, the behavior is undefined. You can also encounter run-
time errors.

Fix

Perform encryption or decryption in this sequence:

• Initialization of cipher context
• Update steps
• Final step
• Cleanup of context

Examples

Missing Update Steps for Encryption Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>

 Missing cipher data to process

3-341

#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Missing update steps for encryption */

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

In this example, after the cipher context is initialized, there are no update steps for
encrypting the data. The update steps are supposed to encrypt one or more blocks of
data, leaving the final step to encrypt data that is left over in a partial block. If you
perform the final step without previous update steps, the behavior is undefined.

Perform update steps for encryption before the final step. In the corrected code below, the
routine EVP_EncryptUpdate performs the update steps.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

3 Defects

3-342

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_DATA
Impact: Medium
CWE ID: 311, 325, 372, 664

Introduced in R2017a

 Missing cipher data to process

3-343

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher final step
You do not perform a final step after update steps for encrypting or decrypting data

Description
Missing cipher final step occurs when you do not perform a final step after your
update steps for encrypting or decrypting data.

For instance, you do the following:

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Missing final step */
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Risk
Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you do not perform the final step, leftover data remaining in a partial block is not
encrypted or decrypted. You can face incomplete or unexpected output.

Fix
After your update steps for encryption or decryption, perform a final step to encrypt or
decrypt leftover data.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);

3 Defects

3-344

...
/* Update step(s) */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(&ctx, out_buf, &out_len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Examples

Cleanup of Cipher Context Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Missing final encryption step */

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

 Missing cipher final step

3-345

In this example, the cipher context ctx is cleaned up before a final encryption step. The
final step is supposed to encrypt leftover data. Without the final step, the encryption is
incomplete.

After your update steps for encryption, perform a final encryption step to encrypt leftover
data. In the corrected code below, the routine EVP_EncryptFinal_ex is used to perform
this final step.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

Result Information
Group: Security
Language: C | C++
Default: Off

3 Defects

3-346

Command-Line Syntax: CRYPTO_CIPHER_NO_FINAL
Impact: Medium
CWE ID: 311, 325, 372, 664

Introduced in R2017a

 Missing cipher final step

3-347

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher key
Non-NULL key is not associated with the cipher context for encryption or decryption

Description
Missing cipher key occurs when you encrypt or decrypt data using a NULL encryption
or decryption key.

Note You can initialize your cipher context with a NULL key. However, before you
encrypt or decrypt your data, you must associate the cipher context with a non-NULL
key.

Risk

Encryption or decryption with a NULL key can lead to run-time errors or at least, non-
secure ciphertext.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL key.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

Sometimes, you initialize your cipher context with a non-NULL key

ret = EVP_EncryptInit_ex(&ctx, cipher_algo_1, NULL, key, iv)

but change the cipher algorithm later. When you change the cipher algorithm, you use a
NULL key.

 ret = EVP_EncryptInit_ex(&ctx, cipher_algo_2, NULL, NULL, NULL)

3 Defects

3-348

The second statement reinitializes the cipher context completely but with a NULL key.
To avoid this issue, every time you initialize a cipher context with an algorithm,
associate it with a key.

Examples

NULL Key Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, iv);

 /* Update step with NULL key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher key associated with the context ctx is NULL. When you use
this context to encrypt your data, you can encounter run-time errors.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

 Missing cipher key

3-349

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL cipher key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

Introduced in R2017a

3 Defects

3-350

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing explicit keyword
Constructor missing the explicit specifier

Description
Missing explicit keyword occurs when the declaration of a constructor does not use
the explicit specifier. The explicit specifier prevents implicit conversion from a
variable of another type to the current class type.

The defect applies to:

• One-parameter constructors.
• Constructors where all but one parameters have default values.

For instance, MyClass::MyClass(float f, bool b=true){}.

Risk

If you do not declare a constructor explicit, compilers can perform unexpected and
often unintended type conversions to the class type using the constructor.

The implicit conversion can occur, for instance, when a function accepts a parameter of
the class type, but you call the function with an argument of a different type.

Fix

For better readability of your code and to prevent implicit conversions, in the constructor
declaration, place the explicit keyword before the constructor name.

If you want to convert from a variable of another type, explicitly call the class constructor
and pass the variable as argument.

 Missing explicit keyword

3-351

Examples

Missing explicit Keyword
class MyClass {
public:
 MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
 func(0); // Implicit conversion
}

In this example, the constructor of MyClass is not declared explicit. Therefore, the
call func(0) can perform an implicit conversion from int to MyClass.

One possible correction is to declare the constructor of MyClass as explicit. If an
operation in your code performs an implicit conversion, the compiler generates an error.
Therefore, using the explicit keyword, you detect unintended type conversions in the
compilation stage.

For instance, in function main below, if you add the statement func(0); that performs
implicit conversion, the code does not compile.

class MyClass {
public:
 explicit MyClass(int val);
private:
 int val;
};

void func(MyClass);

3 Defects

3-352

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
}

Incorrect Argument Order Preventable Through explicit Keyword
class Month {
 int val;
public:
 Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(20,1,2000); //Implicit conversion, wrong argument order undetected
}

 Missing explicit keyword

3-353

In this example, the constructors for classes Month, Day and Year do not have an
explicit keyword. They allow implicit conversion from int variables to Month, Day
and Year variables.

When you create a Date variable and use an incorrect argument order for the Date
constructor, because of the implicit conversion, your code compiles. You might not detect
that you have switched the month value and the day value.

If you use the explicit keyword for the constructors of classes Month, Day and Year,
you cannot call the Date constructor with an incorrect argument order.

• If you call the Date constructor with int variables, your code does not compile
because the explicit keyword prevents implicit conversion from int variables.

• If you call the Date constructor with the arguments explicitly converted to Month,
Day and Year, and have the wrong argument order, your code does not compile
because of the argument type mismatch.

class Month {
 int val;
public:
 explicit Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 explicit Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 explicit Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;

3 Defects

3-354

public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(Month(1),Day(20),Year(2000));
 // Date(20,1,2000); - Does not compile
 // Date(Day(20), Month(1), Year(2000)); - Does not compile
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_EXPLICIT_KEYWORD
Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Missing explicit keyword

3-355

Missing lock
Unlock function without lock function

Description
Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)

3 Defects

3-356

{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following
options:
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

my_task, reset

Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls
end_critical_section before calling begin_critical_section.

One possible correction is to call the lock function begin_critical_section before the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;

 Missing lock

3-357

 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

In this example, to emulate multitasking behavior, you must specify the following
options:

3 Defects

3-358

Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

my_task, reset

Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_UNLOCK

 Missing lock

3-359

Impact: Medium
CWE ID: 832
CERT C ID: CON01-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing unlock

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3 Defects

3-360

https://cwe.mitre.org/data/definitions/832.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Missing null in string array
String does not terminate with null character

Description
Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'. This defect can cause various memory errors in
your code, so is important to fix it.

This defect applies only for projects in C.

Examples

Array size is too small
void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

 Missing null in string array

3-361

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Check Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_NULL_CHAR
Impact: Low
CWE ID: 170
CERT C ID: ARR33-C, STR11-C, STR31-C
ISO/IEC TS 17961 ID: NONNULLCS, TAINTFORMATIO

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-362

http://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/x/GoEAAQ
https://www.securecoding.cert.org/confluence/x/KAE

Missing reset of a freed pointer
Pointer free not followed by a reset statement to clear leftover data

Description
Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the
pointer to NULL.

Examples

Free Without Reset
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{

 Missing reset of a freed pointer

3-363

 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)
 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {
 free(str);

3 Defects

3-364

 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_FREED_PTR_RESET
Impact: Low
CWE ID: 415, 416
CERT C ID: MEM01-C

See Also
Use of previously freed pointer | Invalid free of pointer

Introduced in R2016b

 Missing reset of a freed pointer

3-365

http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
https://www.securecoding.cert.org/confluence/x/uAE

Missing return statement
Function does not return value though return type is not void

Description
Missing return statement occurs when a function does not return a value along at
least one execution path. If the return type of the function is void, this error does not
occur.

Examples

Missing or invalid return statement error
int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {

3 Defects

3-366

 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: MISSING_RETURN
Impact: Low
CERT C ID: MSC37-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Missing return statement

3-367

https://www.securecoding.cert.org/confluence/x/goCGAg

Missing unlock
Lock function without unlock function

Description
Missing unlock occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Examples

Missing Unlock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();

3 Defects

3-368

}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:
Option Value
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

my_task, reset

Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical
section through the call begin_critical_section();. my_task ends without calling
end_critical_section.

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)

 Missing unlock

3-369

{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;
 }
}

3 Defects

3-370

In this example, to emulate multitasking behavior, specify the following options.
Option Specification
Configure multitasking
manually on page 1-105
Entry points on page 1-
112

my_task, reset

Critical section details on
page 1-124

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

One possible correction is to call the unlock function end_critical_section outside
the if condition.

 Missing unlock

3-371

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

3 Defects

3-372

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else
 end_critical_section();
 index++;
 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_LOCK
Impact: High
CWE ID: 667
CERT C ID: MEM12-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Entry
points (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing lock

 Missing unlock

3-373

https://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/x/8AG7AQ

Topics
“Set Up Multitasking Analysis Manually”

Introduced in R2014b

3 Defects

3-374

Missing virtual inheritance
A base class is inherited virtually and nonvirtually in the same hierarchy

Description
Missing virtual inheritance occurs when:

• A class is derived from multiple base classes, and some of those base classes are
themselves derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate_left and
Intermediate_right. Both Intermediate_left and Intermediate_right are
derived from a common class, Base.

• At least one of the inheritances from the common base class is virtual and at least
one is not virtual.

For instance, the inheritance of Intermediate_right from Base is virtual. The
inheritance of Intermediate_left from Base is not virtual.

Risk

If this defect appears, multiple copies of the base class data members appear in the final
derived class object. To access the correct copy of the base class data member, you have to
qualify the member and method name appropriately in the final derived class. The
development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear
in an object of class Final. If you do not qualify method names appropriately in the class
Final, you can assign a value to a Base data member but not retrieve the same value.

• You assign the value using a Base method accessed through Intermediate_left.
Therefore, you assign the value to one copy of the Base member.

• You retrieve the value using a Base method accessed through
Intermediate_right. Therefore, you retrieve a different copy of the Base member.

 Missing virtual inheritance

3-375

Fix

Declare all the intermediate inheritances as virtual when a class is derived from
multiple base classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the
intermediate derived classes, use aggregation instead of inheritance. For instance,
declare two objects of class Intermediate_left and Intermediate_right in the
Final class.

Examples

Missing Virtual Inheritance
#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;

3 Defects

3-376

};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=0
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

In this example, Final is derived from both Intermediate_left and
Intermediate_right. Intermediate_left is derived from Base in a non-virtual
manner and Intermediate_right is derived from Base in a virtual manner.
Therefore, two copies of the base class and the data member m_b are present in the final
derived class,

Both derived classes Intermediate_left and Intermediate_right do not override
the Base class methods get and set. However, Final overrides both methods. In the
overridden get method, it calls Base::get through Intermediate_left. In the
overridden set method, it calls Base::set through Intermediate_right.

Following the statement d.set(val), Intermediate_right’s copy of m_b is set to 12.
However, Intermediate_left’s copy of m_b is still zero. Therefore, when you call
d.get(), you obtain a value zero.

Using the printf statements, you can see that you retrieve a value that is different from
the value that you set.

 Missing virtual inheritance

3-377

The defect appears in the final derived class definition and on the name of the class that
are derived virtually from the common base class. Following are some tips for navigating
in the source code:

• To find the definition of a class, on the Source pane, right-click the class name and
select Go To Definition.

• To navigate up the class hierarchy, first navigate to the intermediate class definition.
In the intermediate class definition, right-click a base class name and select Go To
Definition.

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base::get and
Base::set through different classes, only one copy of m_b exists in Final.

#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: virtual public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;

3 Defects

3-378

};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=12
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_VIRTUAL_INHERITANCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Missing virtual inheritance

3-379

Introduced in R2015b

3 Defects

3-380

Misuse of a FILE object
Use of copy of FILE object

Description
Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using
memcmp().

• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-

family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong
stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was
not returned from a successful call to an fopen-family function.

Examples

Copy of FILE Object Used in fputs()
#include <stdio.h>
#include <unistd.h>

 Misuse of a FILE object

3-381

#include <stdlib.h>
#include <string.h>
#include <strings.h>

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to
my_stdout. The contents of stdout might not be significant. fputs() is then called
with the address of my_stdout as an argument. Because no call to fopen() or a similar
function was made, the address of my_stdout might not point to the correct stream.

Declare my_stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();

3 Defects

3-382

 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FILE_OBJECT_MISUSE
Impact: Low
CERT C ID: FIO38-C
ISO/IEC TS 17961 ID: filecpy

See Also

Introduced in R2017b

 Misuse of a FILE object

3-383

https://www.securecoding.cert.org/confluence/x/wAw

Misuse of structure with flexible array member
Memory allocation ignores flexible array member

Description
Misuse of structure with flexible array member occurs when:

• You define an object with a flexible array member of unknown size at compilation
time.

• You make an assignment between structures with a flexible array member without
using memcpy() or a similar function.

• You use a structure with a flexible array member as an argument to a function and
pass the argument by value.

• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure
with at least two named members.

Risk

If the size of the flexible array member is not defined, it is ignored when allocating
memory for the containing structure. Accessing such a structure has undefined behavior.

Fix
• Use malloc() or a similar function to allocate memory for a structure with a flexible

array member.
• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

3 Defects

3-384

Examples

Structure Passed By Value to Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

 Misuse of structure with flexible array member

3-385

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As
a result, the flexible array member data is not copied to the passed argument.

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {

3 Defects

3-386

 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE
Impact: Low
CERT C ID: MEM33-C

See Also

Introduced in R2017b

 Misuse of structure with flexible array member

3-387

https://www.securecoding.cert.org/confluence/x/6AAl

Misuse of errno
errno incorrectly checked for error conditions

Description
Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking errno
can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

3 Defects

3-388

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Examples

Incorrectly Checking for errno After fopen Call
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) { if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might
miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>

 Misuse of errno

3-389

#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ERRNO_MISUSE
Impact: High
CWE ID: 703
CERT C ID: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive
function not checked | Unsafe conversion from string to numerical
value

Introduced in R2017a

3 Defects

3-390

https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl

Misuse of readlink()
Third argument of readlink does not leave space for null terminator in buffer

Description
Misuse of readlink() occurs when you pass a buffer size argument to readlink() that
does not leave space for a null terminator in the buffer.

For instance:

ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough
symbolic links, this use of readlink() does not leave space to enter a null terminator.

Risk

The readlink() function copies the content of a symbolic link (first argument) to a
buffer (second argument). However, the function does not append a null terminator to
the copied content. After using readlink(), you must explicitly add a null terminator to
the buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null
terminator.

Fix

When using the readlink() function, make sure that the third argument is one less
than the buffer size.

Then, append a null terminator to the buffer. To determine where to add the null
terminator, check the return value of readlink(). If the return value is -1, an error has
occurred. Otherwise, the return value is the number of characters (bytes) copied.

 Misuse of readlink()

3-391

Examples

Incorrect Size Argument of readlink
#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second
argument). If the first argument is long enough, this use of readlink does not leave
space for the null terminator.

Also, if no characters are copied, the return value of readlink is 0. The following
statement leads to a buffer underflow when len is 0.

buf[len - 1] = '\0';

One possible correction is to make sure that the third argument of readlink is one less
than size of the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

void func() {

3 Defects

3-392

 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: READLINK_MISUSE
Impact: Medium
CWE ID: 170
CERT C ID: POS30-C

See Also
Polyspace Results
Array access out of bounds | File access between time of check and use
(TOCTOU) | Invalid use of standard library string routine | Pointer
access out of bounds | Returned value of a sensitive function not
checked

Introduced in R2017a

 Misuse of readlink()

3-393

https://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/display/c/POS30-C.+Use+the+readlink()+function+properly

Misuse of return value from nonreentrant standard
function
Pointer to static buffer from previous call is used despite a subsequent call that modifies
the buffer

Description
Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

3 Defects

3-394

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first
call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Examples

Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */

 Misuse of return value from nonreentrant standard function

3-395

 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);

3 Defects

3-396

 }
 }
 }
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NON_REENTRANT_STD_RETURN
Impact: High
CERT C ID: ENV34-C
ISO/IEC TS 17961 ID: libuse

See Also
Polyspace Results
Modification of internal buffer returned from nonreentrant standard
function | Use of obsolete standard function

Introduced in R2017a

 Misuse of return value from nonreentrant standard function

3-397

https://www.securecoding.cert.org/confluence/x/GAAa

Misuse of sign-extended character value
Data type conversion with sign extension causes unexpected behavior

Description
Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. Then you use the
resulting sign-extended value as array index or for comparison with EOF.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as
signed. On this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, sign-extended plain char variables cannot be
used as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Fix

Cast the signed or plain char value explicitly to unsigned char before conversion to a
wider integer data type.

Examples

Sign-extended Character Value Compared with EOF
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

3 Defects

3-398

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in
the string has the decimal form 255, when converted to the int variable c, its value
becomes –1, which is indistinguishable from EOF. The later comparison with EOF can
lead to a false positive.

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

 Misuse of sign-extended character value

3-399

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHARACTER_MISUSE
Impact: Medium
CWE ID: 704
CERT C ID: STR34-C
ISO/IEC TS 17961 ID: signconv

See Also
Polyspace Results
Character value absorbed into EOF | Errno not checked | Invalid use of
standard library integer routine | Returned value of a sensitive
function not checked

Introduced in R2017a

3 Defects

3-400

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/QgBi

Modification of internal buffer returned from
nonreentrant standard function
Function attempts to modify internal buffer returned from a nonreentrant standard
function

Description
Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an
internal buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror
and others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause
the following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you
modify this value, you alter the environment of the process and corrupt other internal
data.

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

 Modification of internal buffer returned from nonreentrant standard function

3-401

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Examples

Modification of getenv Return Value
#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies
this argument.

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];

3 Defects

3-402

 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC
Impact: Low
CWE ID: 573, 628
CERT C ID: ENV30-C, STR06-C
ISO/IEC TS 17961 ID: libmod

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Modification of internal buffer returned from nonreentrant standard function

3-403

http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/XgAl
https://www.securecoding.cert.org/confluence/x/owAV

Non-initialized pointer
Pointer not initialized before dereference

Description
Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Examples

Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

One possible correction is to assign an address to pi when prev is not NULL.

3 Defects

3-404

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_PTR
Impact: High
CWE ID: 456, 457, 824, 908
CERT C ID: EXP33-C, MEM09-C, MSC15-C
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized variable

 Non-initialized pointer

3-405

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-406

Non-initialized variable
Variable not initialized before use

Description
Non-initialized variable occurs when a variable is not initialized before its value is
read.

Examples

Non-initialized variable error
int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{

 Non-initialized variable

3-407

 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_VAR
Impact: High
CWE ID: 456, 457, 908
CERT C ID: EXP33-C, MEM09-C, MSC15-C, MSC39-C
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3 Defects

3-408

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/VwCMAg

Introduced in R2013b

 Non-initialized variable

3-409

Null pointer
NULL pointer dereferenced

Description
Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Examples

Null pointer error
#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

3 Defects

3-410

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: NULL_PTR
Impact: High
CWE ID: 476
CERT C ID: EXP34-C, MSC15-C
ISO/IEC TS 17961 ID: nullref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Arithmetic operation with NULL pointer | Non-initialized pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Null pointer

3-411

http://cwe.mitre.org/data/definitions/476.html
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu

Object slicing
Derived class object passed by value to function with base class parameter

Description
Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual method
can be called. For instance, the base class contains a virtual method and the derived
class contains an implementation of that method. When you call the virtual method
from the function body, the base class method is called, even though you pass a derived
class object to the function.

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

3 Defects

3-412

Examples

Function Call Causing Object Slicing
#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {
 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object

 Object slicing

3-413

 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1
instead of the expected Updated _b=-1. Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function
funcPassByValue treats its parameter b as a Base object. It calls Base::update()
instead of Derived::update().

One possible correction is to pass the Derived object dObj by reference or by pointer. In
the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the
expected result Updated _b=-1.

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

3 Defects

3-414

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: OBJECT_SLICING
Impact: High

 Object slicing

3-415

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-416

Opening previously opened resource
Opening an already opened file

Description
Opening previously opened resource checks for file opening functions that are
opening an already opened file.

Risk

If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix

Once a resource is open, close the resource before reopening.

Examples

File Reopened With New Permissions
#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");

 Opening previously opened resource

3-417

 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write
privileges. Halfway through the function, the logfile is opened again with read
privileges.

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Result Information
Group: Resources
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_OPEN
Impact: Medium
CWE ID: 362, 675
CERT C ID: FIO24-C, FIO31-C

Introduced in R2016b

3 Defects

3-418

http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/675.html
https://www.securecoding.cert.org/confluence/x/pwA1

Overlapping assignment
Memory overlap between left and right sides of an assignment

Description
Overlapping assignment occurs when there is a memory overlap between the left and
right sides of an assignment. For instance, a variable is assigned to itself or one member
of a union is assigned to another.

Risk

If the left and right sides of an assignment have memory overlap, the behavior is either
redundant or undefined. For instance:

• Self-assignment such as x=(int)(long)x; is redundant unless x is volatile-
qualified.

• Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

• The result of the assignment u1.a = u1.b is undefined because u1.b is not
initialized.

• The result of the assignment u2.b = u2.a depends on the alignment and
endianness of the implementation. It is not defined by C standards.

union {
 char a;
 int b;
}u1={'a'}, u2={'a'}; //'u1.a' and 'u2.a' are initialized

u1.a = u1.b;
u2.b = u2.a;

Fix

Avoid assignment between two variables that have overlapping memory.

 Overlapping assignment

3-419

Examples

Assignment of Union Members
#include <string.h>

union Data {
 int i;
 float f;
};

int main() {
 union Data data;
 data.i = 0;
 data.f = data.i;

 return 0;
}

In this example, the variables data.i and data.f are part of the same union and are
stored in the same location. Therefore, part of their memory storage overlaps.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_ASSIGN
Impact: Low
CWE ID: 665
CERT C ID: MSC15-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy of overlapping memory

3 Defects

3-420

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/EoLu

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Overlapping assignment

3-421

Partial override of overloaded virtual functions
Class overrides fraction of inherited virtual functions with a given name

Description
Partial override of overloaded virtual functions occurs when:

• A base class has multiple virtual methods with the same name but different
signatures (overloading).

• A class derived from the base class overrides at least one of those virtual methods,
but not all of them.

Risk
The virtual methods that the derived class does not override are hidden. You cannot
call those methods using an object of the derived class.

Fix
See if the overloads in the base class are required. If they are needed, possible solutions
include:

• In your derived class, if you override one virtual method, override all virtual
methods from the base class with the same name as that method.

• Otherwise, add the line using Base_class_name::method_name to the derived
class declaration. In this way, you can call the base class methods using an object of
the derived class.

Examples

Partial Override
class Base {
public:

3 Defects

3-422

 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

In this example, the class Derived overrides the function set that takes an int
argument. It does not override other functions that have the same name set but take
arguments of other types.

The defect appears on the derived class name in the derived class definition. To find
which base class method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the method that has the same name and
signature as a derived class method name.

 Partial override of overloaded virtual functions

3-423

One possible correction is add the line using Base::set to the Derived class
declaration.

class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 using Base::set;
 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++

3 Defects

3-424

Default: On
Command-Line Syntax: PARTIAL_OVERRIDE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Partial override of overloaded virtual functions

3-425

Partially accessed array
Array partly read or written before end of scope

Description
Partially accessed array occurs when an array is partially read or written before the
end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Examples

Partially accessed array error

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;
 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating
sum, tab[4] is not included.

One possible correction is to read every element in the array tab.

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */

3 Defects

3-426

 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTIALLY_ACCESSED_ARRAY
Impact: Low

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Partially accessed array

3-427

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description
Pointer access out of bounds occurs when a pointer is dereferenced outside its
bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Examples

Pointer access out of bounds error
int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

One possible correction is to reverse the order of increment and dereference of ptr.

3 Defects

3-428

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to
it, it is not dereferenced more.

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_PTR
Impact: High
CWE ID: 119, 188, 466, 823
CERT C ID: API02-C, ARR30-C, ARR38-C, ARR39-C, EXP08-C, EXP39-C, MEM35-C,
MSC15-CSTR31-C
ISO/IEC TS 17961 ID: ptrcomp, insufmem, invptr, taintformatio

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Array access out of bounds

Topics
“Navigate to Root Cause of Defect”

 Pointer access out of bounds

3-429

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/-QFqAQ
https://www.securecoding.cert.org/confluence/x/2wE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KAE

“Review and Fix Results”

Introduced in R2013b

3 Defects

3-430

Pointer dereference with tainted offset
Offset is from an unsecure source and dereference may be out of bounds

Description
Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk
The index might be outside the valid array range. If the tainted index is outside the
array range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted

buffer.

An attacker can use an invalid read or write to compromise your program.

Fix
Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Examples

Dereference Pointer Array
#include <stdlib.h>

 Pointer dereference with tainted offset

3-431

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

One possible correction is to validate the value of the index. If the index is inside the
valid range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];

3 Defects

3-432

 }
 free(pint);
 }
 return c;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR_OFFSET
Impact: Low
CWE ID: 122, 124, 129, 823
CERT C ID: API00-C, API02-C, ARR30-C
ISO/IEC TS 17961 ID: invptr

See Also
Array access with tainted index | Use of tainted pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Pointer dereference with tainted offset

3-433

http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg

Pointer or reference to stack variable leaving scope
Pointer to local variable leaves the variable scope

Description
Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

3 Defects

3-434

Examples

Pointer to Local Variable Returned from Function
void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: LOCAL_ADDR_ESCAPE
Impact: High
CWE ID: 562
CERT C ID: DCL30-C
ISO/IEC TS 17961 ID: addrescape

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”

 Pointer or reference to stack variable leaving scope

3-435

http://cwe.mitre.org/data/definitions/562.html
https://www.securecoding.cert.org/confluence/x/bQ4

“Review and Fix Results”

Introduced in R2015b

3 Defects

3-436

Pointer to non-initialized value converted to const
pointer
Pointer to constant assigned address that does not contain a value

Description
Pointer to non initialized value converted to const pointer occurs when a pointer
to a constant is assigned an address that does not yet contain a value.

Examples

Pointer to non initialized value converted to const pointer error
#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

 Pointer to non-initialized value converted to const pointer

3-437

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: NON_INIT_PTR_CONV
Impact: Medium
ISO/IEC TS 17961 ID: uninitref

See Also
Find defects (-checkers)

3 Defects

3-438

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Pointer to non-initialized value converted to const pointer

3-439

Possible misuse of sizeof
Use of sizeof operator can cause unintended results

Description
Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

3 Defects

3-440

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Examples

sizeof Used Incorrectly to Determine Array Size
#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 Possible misuse of sizeof

3-441

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIZEOF_MISUSE
Impact: High
CWE ID: 467
CERT C ID: ARR00-C, ARR01-C, ARR38-C, ARR39-C, EXP01-C
ISO/IEC TS 17961 ID: libptr, insufmem, sizeofptr

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites
Linux man page for strncmp
Linux man page for wcsncpy

Introduced in R2015b

3 Defects

3-442

http://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://man7.org/linux/man-pages/man3/strcmp.3.html

Possibly unintended evaluation of expression
because of operator precedence rules
Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description
Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1-op_2 are
operator combinations that commonly induce this error. For instance, (x == y | z).

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

 Possibly unintended evaluation of expression because of operator precedence rules

3-443

Examples

Expressions with Possibly Unintended Evaluation Order
int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OPERATOR_PRECEDENCE
Impact: High
CWE ID: 783
CERT C ID: EXP00-C, EXP13-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

External Websites
C++ Operator Precedence

3 Defects

3-444

http://cwe.mitre.org/data/definitions/783.html
https://www.securecoding.cert.org/confluence/x/_wI
https://www.securecoding.cert.org/confluence/x/LoFCAQ
http://en.cppreference.com/w/cpp/language/operator_precedence

Introduced in R2015b

 Possibly unintended evaluation of expression because of operator precedence rules

3-445

Predictable block cipher initialization vector
Initialization vector is generated from a weak random number generator

Description
Predictable block cipher initialization vector occurs when you use a weak random
number generator for the block cipher initialization vector.

Risk

If you use a weak random number generator for the initiation vector, your data is
vulnerable to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with
the encrypted output from the previous block. To protect the first block, these modes use
a random initialization vector (IV). If you use a weak random number generator for your
IV, your data becomes vulnerable to dictionary attacks.

Fix

Use a strong pseudo-random number generator (PRNG) for the initialization vector. For
instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter

(CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

3 Defects

3-446

Examples

Predictable Initialization Vector
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the initialization vector. The byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Use a strong random number generator to produce the initialization vector. The
corrected code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Security
Language: C | C++
Default: Off

 Predictable block cipher initialization vector

3-447

Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_IV
Impact: Medium
CWE ID: 310, 329, 330, 338
CERT C ID: MSC18-C

Introduced in R2017a

3 Defects

3-448

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Predictable cipher key
Encryption or decryption key is generated from a weak random number generator

Description
Predictable cipher key occurs when you use a weak random number generator for the
encryption or decryption key.

Risk

If you use a weak random number generator for the encryption or decryption key, an
attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix

Use a strong pseudo-random number generator (PRNG) for the key. For instance:

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on
Windows

• Use an application-level PRNG such as Advanced Encryption Standard (AES) in
Counter (CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Predictable Cipher Key

 Predictable cipher key

3-449

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the cipher key. However, the byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

One possible correction is to use a strong random number generator to produce the cipher
key. The corrected code here uses the function RAND_bytes declared in openssl/
rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_KEY
Impact: Medium
CWE ID: 310, 326, 330, 338
CERT C ID: MSC18-C

3 Defects

3-450

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Introduced in R2017a

 Predictable cipher key

3-451

Predictable random output from predictable seed
Seeding routine uses a predictable seed making the output predictable

Description
Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and
memory clusters. This information is more random and a user cannot access this
information.

Some standard random routines are inherently cryptographically weak on page 3-630,
and should not be used for security purposes.

Examples

Seed as an Argument
#include <stdlib.h>
#include <time.h>

3 Defects

3-452

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

 Predictable random output from predictable seed

3-453

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_PREDICTABLE
Impact: Medium
CWE ID: 330, 337
CERT C ID: MSC32-C

See Also
Deterministic random output from constant seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-454

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/337.html
https://www.securecoding.cert.org/confluence/x/hABhAQ

Privilege drop not verified
Verify privilege relinquishment was successful

Description
Privilege drop not verified detects calls to functions that relinquish privileges. If you
do not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have
more access to your program than intended. This security hole can cause unexpected
behavior in your code if left open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Examples

Drop Privileges Within a Function
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck() {
 /* Code intended to run with elevated privileges */

 Privilege drop not verified

3-455

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck() {
 /* Store the privileged ID for later verification */

3 Defects

3-456

 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0)
 {
 /* Handle error */
 fatal_error();
 }
 }

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0)
 {
 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

 Privilege drop not verified

3-457

 /* Code intended to run with lower privileges; */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_PRIVILEGE_DROP_CHECK
Impact: High
CWE ID: 250, 273
CERT C ID: POS37-C

Introduced in R2016b

3 Defects

3-458

http://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/273.html
https://www.securecoding.cert.org/confluence/x/WIAAAQ

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description
Qualifier removed in conversion occurs during a conversion when one variable has a
qualifier and the other does not. For example, when converting from a const int to an
int, the conversion removes the const qualifier.

This defect applies only for projects in C.

Examples

Cast of Character Pointers
void implicit_cast(void) {
 const char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

During the assignment to the character q, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

One possible correction is to add the same qualifiers to the new variables. In this
example, changing q to a const char fixes the defect.

void implicit_cast(void) {
 const char cc, *pcc = &cc;
 const char * quo;

 Qualifier removed in conversion

3-459

 quo = &cc;
 quo = pcc;

 read(quo);
}

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the
defect.

void implicit_basic_cast(void) {
 char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

Check Information
Group: Programming
Language: C
Default: Off
Command-Line Syntax: QUALIFIER_MISMATCH
Impact: Low
CWE ID: 704
CERT C ID: EXP05-C, EXP32-C, EXP37-C
ISO/IEC TS 17961 ID: argcomp

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3 Defects

3-460

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/VAE
https://www.securecoding.cert.org/confluence/x/hAY
https://www.securecoding.cert.org/confluence/x/VQBc

Introduced in R2013b

 Qualifier removed in conversion

3-461

Resource leak
File stream not closed before FILE pointer scope ends or pointer is reassigned

Description
Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Examples

FILE Pointer Not Released Before End of Scope
#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");

3 Defects

3-462

 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: RESOURCE_LEAK
Impact: High
CWE ID: 772
CERT C ID: FIO42-C, MEM12-C
ISO/IEC TS 17961 ID: fileclose

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”

 Resource leak

3-463

http://cwe.mitre.org/data/definitions/772.html
https://www.securecoding.cert.org/confluence/x/GAGQBw
https://www.securecoding.cert.org/confluence/x/8AG7AQ

“Review and Fix Results”

Introduced in R2015b

3 Defects

3-464

Return from computational exception signal handler
Undefined behavior when signal handler returns normally from program error

Description
Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort(), quick_exit(), or _Exit() in the handler to stop the
program.

Examples

Signal Handler Return from Division by Zero
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)

 Return from computational exception signal handler

3-465

{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation
error. The handler changes the value of denom if it is zero and returns, which is
undefined behavior.

After catching a computational exception, call abort() from sig_handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

3 Defects

3-466

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_COMP_EXCP_RETURN
Impact: Low
CWE ID: 387,
CERT C ID: SIG35-C

See Also
Function called from signal handler not asynchronous-safe | Function
called from signal handler not asynchronous-safe (strict) | Signal
call from within signal handler

Introduced in R2017b

 Return from computational exception signal handler

3-467

https://cwe.mitre.org/data/definitions/387.html
https://www.securecoding.cert.org/confluence/x/QgGRAg

Return of non const handle to encapsulated data
member
Method returns pointer or reference to internal member of object

Description
Return of non-const handle to encapsulated data member occurs when:

• A class method returns a handle to a data member. Handles include pointers and
references.

• The method is more accessible than the data member. For instance, the method has
access specifier public, but the data member is private or protected.

Risk

The access specifier determines the accessibility of a class member. For instance, a class
member declared with the private access specifier cannot be accessed outside a class.
Therefore, nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member
accessibility changes. For instance, if a public method returns a pointer to a private
data member, the data member is effectively not private anymore. A nonmember,
nonfriend function calling the public method can use the returned pointer to view and
modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you
delete the object, the second pointer can be left dangling. The second pointer points to the
part of an object that does not exist anymore.

Fix

One possible fix is to avoid returning a handle to a data member from a class method.
Return a data member by value so that a copy of the member is returned. Modifying the
copy does not change the data member.

3 Defects

3-468

If you must return a handle, use a const qualifier with the method return type so that
the handle allows viewing, but not modifying, the data member.

Examples

Return of Pointer to private Data Member
#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period* getPeriod(void);
};

Period* DataBaseEntry::getPeriod(void) {
 return &employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {

 Return of non const handle to encapsulated data member

3-469

 tempPeriod = dataBase[i].getPeriod();
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

In this example, employmentPeriod is private to the class DataBaseEntry. It is
therefore immune from modification by nonmember, nonfriend functions. However,
returning a pointer to employmentPeriod breaks this encapsulation. For instance, the
nonmember function reset modifies the member startDate of employmentPeriod.

One possible correction is to return the data member employmentPeriod by value
instead of pointer. Modifying the return value does not change the data member because
the return value is a copy of the data member.

#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period getPeriod(void);

3 Defects

3-470

};

Period DataBaseEntry::getPeriod(void) {
 return employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period tempPeriodVal;
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {
 tempPeriodVal = dataBase[i].getPeriod();
 tempPeriod = &tempPeriodVal;
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: BREAKING_DATA_ENCAPSULATION
Impact: Medium
CWE ID: 767

 Return of non const handle to encapsulated data member

3-471

http://cwe.mitre.org/data/definitions/767.html

See Also
Polyspace Analysis Options
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-472

Returned value of a sensitive function not checked
Sensitive functions called without checking for unexpected return values and errors

Description
Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can

 Returned value of a sensitive function not checked

3-473

propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Examples

Sensitive Function Return Ignored
#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

3 Defects

3-474

One possible correction is to test the return value of pthread_attr_init to check for
errors.
#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because
pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

 Returned value of a sensitive function not checked

3-475

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RETURN_NOT_CHECKED
Impact: High
CWE ID: 252, 754
CERT C ID: ERR33-C, EXP12-C, FIO04-C, FIO33-C, POS54-C
ISO/IEC TS 17961 ID: liberr

Introduced in R2016b

3 Defects

3-476

http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/754.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/9YIRAQ
https://www.securecoding.cert.org/confluence/x/iIBfBw

Self assignment not tested in operator
Copy assignment operator does not test for self-assignment

Description
Self assignment not tested in operator occurs when you do not test if the argument
to the copy assignment operator of an object is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with

contents obtained from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument.ptr, is not associated with
a memory location. *opArgument.ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the
test, perform the assignments in the copy assignment operator.

 Self assignment not tested in operator

3-477

Examples

Missing Test for Self-Assignment
class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }
private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter f is the current object, after the statement delete p_, the
memory allocated to pointer f.p_ is also deallocated. Therefore, the statement p_ =
new MyClass1(*f.p_) initializes the memory location that p_ points to with
unpredictable values.

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {
 delete p_;

3 Defects

3-478

 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_SELF_ASSIGN_TEST
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Self assignment not tested in operator

3-479

Sensitive data printed out
Function prints sensitive data

Description
Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or
getpwuid.

• Input values of functions such as the Windows-specific function LogonUser.

Risk

Printing sensitive information, such as passwords or user information, allows an
attacker additional access to the information.

Fix

One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

Examples

Printing Passwords
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>

3 Defects

3-480

#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

 Sensitive data printed out

3-481

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_DATA_PRINT
Impact: Medium
CWE ID: 532, 534, 535
CERT C ID: MEM06-C

See Also
Sensitive heap memory not cleared before release | Uncleared sensitive
data in stack

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-482

http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/535.html
https://www.securecoding.cert.org/confluence/x/xoC_/

Sensitive heap memory not cleared before release
Sensitive data not cleared or released by memory routine

Description
Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free
the memory, Bug Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Examples

Sensitive Buffer Freed, Not Cleared
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 free(buf);
}

 Sensitive heap memory not cleared before release

3-483

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_HEAP_NOT_CLEARED
Impact: Medium
CWE ID: 244
CERT C ID: MEM03-C, MSC18-C

3 Defects

3-484

http://cwe.mitre.org/data/definitions/244.html
https://www.securecoding.cert.org/confluence/x/4A8
https://www.securecoding.cert.org/confluence/x/vQFqAQ

See Also
Uncleared sensitive data in stack | Sensitive data printed out

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Sensitive heap memory not cleared before release

3-485

Shared data access within signal handler
Access or modification of shared data causes inconsistent state

Description
Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk
When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix
To access or modify shared objects inside a signal handler, check that the objects are
lock-free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Examples

int Variable Access in Signal Handler
#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */

3 Defects

3-486

 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)

 Shared data access within signal handler

3-487

{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_SHARED_OBJECT
Impact: Medium
CERT C ID: SIG31-C
ISO/IEC TS 17961 ID: accsig

See Also
Function called from signal handler not asynchronous-safe | Signal
call from within signal handler

Introduced in R2017b

3 Defects

3-488

https://www.securecoding.cert.org/confluence/x/GIEt

Shift of a negative value
Shift operator on negative value

Description
Shift of a negative value occurs when a bit-wise shift is used on a negative number.
Shifts can overwrite the sign bit that identifies a number as negative.

Examples

Shifting a negative variable
int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Check Information
Group: Numerical

 Shift of a negative value

3-489

Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_NEG
Impact: Low
CERT C ID: INT34-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Shift operation overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-490

https://www.securecoding.cert.org/confluence/x/IRE

Shift operation overflow
Overflow from shifting operation

Description
Shift operation overflow occurs when a shift operation exceeds the space available to
represent the resulting value.

The exact storage allocation for different data types depends on your processor. See
Target processor type (-target).

Examples

Left Shift of Integer
int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

 Shift operation overflow

3-491

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_OVFL
Impact: Low
CWE ID: 190
CERT C ID: INT34-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-492

http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/x/IRE

Sign change integer conversion overflow
Overflow when converting between signed and unsigned integers

Description
Sign change integer conversion overflow occurs when converting an unsigned
integer to a signed integer. If the variable does not have enough bytes to represent both
the original constant and the sign bit, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Convert from unsigned char to char
char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

 Sign change integer conversion overflow

3-493

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: SIGN_CHANGE
Impact: Medium
CWE ID: 194, 195, 196
CERT C ID: INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Unsigned integer conversion overflow |
Integer conversion overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-494

http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html
https://www.securecoding.cert.org/confluence/x/RQE

Signal call from within signal handler
Nonpersistent signal handler calling signal() in Windows system causes race condition

Description
Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk

A nonpersistent signal handler is reset after catching a signal. The handler does not
catch subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another
signal interrupts the execution of the handler, that signal can cause a race condition
between SIG_DFL and the existing signal handler. A call to signal() can also result in
an infinite loop inside the handler.

Fix

Do not call signal() from a signal handler on Windows platforms.

Examples

signal() Called from Signal Handler
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{

 Signal call from within signal handler

3-495

 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent.
This code can result in a race condition.

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */

3 Defects

3-496

}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_CALLING_SIGNAL
Impact: Medium
CWE ID: 387
CERT C ID: SIG34-C
ISO/IEC TS 17961 ID: sigcall

See Also

Topics
Function called from signal handler not asynchronous-safe
Return from computational exception signal handler
Shared data access within signal handler

Introduced in R2017b

 Signal call from within signal handler

3-497

https://cwe.mitre.org/data/definitions/387.html
https://www.securecoding.cert.org/confluence/x/rIDp

Standard function call with incorrect arguments
Argument to a standard function does not meet requirements for use in the function

Description
Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.
Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of the
function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in
stdio.h such as
fputc and fread

The FILE* pointer
argument can have
the value NULL.

The behavior of the
function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is
undefined.

Most
implementations of
the open function
return a file
descriptor value of
-1. In addition, they
set errno to indicate
that an error has
occurred when
opening a file.

Test the return value
of the open function
for -1 before using it
as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

3 Defects

3-498

Function Type Situation Risk Fix
The file descriptor
argument represents
a closed file
descriptor.

The behavior of the
function is
undefined.

Close the file
descriptor only after
you have completely
finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp
and mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last six
characters with a
string that makes
the file name unique.
If the last six
characters are not
XXXXXX, the function
cannot generate a
unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

Functions related to
environment
variables such as
getenv and setenv

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

The string argument
terminates with an
equal sign, =. For
instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate the
string argument
with =.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations do
not handle these
edge cases.

Test the string for ""
before using it as
function argument.

 Standard function call with incorrect arguments

3-499

Examples

NULL Pointer Passed as strnlen Argument
#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-
compiler).

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

3 Defects

3-500

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STD_FUNC_ARG_MISMATCH
Impact: Medium
CWE ID: 628, 685, 686, 687
CERT C ID: API00-C, EXP37-C, FIO04-C, FIO33-C, FIO46-C, MSC15-C, STR32-C
ISO/IEC TS 17961 ID: argcomp, liberr, nonnullcs

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Standard function call with incorrect arguments

3-501

http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/KAGQBw
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/KgE

Static uncalled function
Function with static scope not called in file

Description
Static uncalled function occurs when a static function is not called in the same file
where it is defined.

Examples

Uncalled function error

Save the following code in the file Initialize_Value.c

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
/* Defect: Function not called */
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 num=0;

 printf("The value of num is %d",num);
 }

The static function Initialize is not called in the file Initialize_Value.c.

3 Defects

3-502

One possible correction is to call Initialize at least once in the file
Initialize_Value.c.

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 /* Fix: Call static function Initialize */
 num=Initialize();

 printf("The value of num is %d",num);
 }

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: UNCALLED_FUNC
Impact: Low
CWE ID: 561

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Static uncalled function

3-503

http://cwe.mitre.org/data/definitions/561.html

Introduced in R2013b

3 Defects

3-504

Subtraction or comparison between pointers to
different arrays
Subtraction or comparison between pointers causes undefined behavior

Description
Subtraction or comparison between pointers to different arrays occurs when you
subtract or compare pointers that are null or that point to elements in different arrays.
The relational operators for the comparison are >, <, >=, and <=.

Risk

When you subtract two pointers to elements in the same array, the result is the
difference between the subscripts of the two array elements. Similarly, when you
compare two pointers to array elements, the result is the positions of the pointers
relative to each other. If the pointers are null or point to different arrays, a subtraction or
comparison operation is undefined. If you use the subtraction result as a buffer index, it
can cause a buffer overflow.

Fix

Before you subtract or use relational operators to compare pointers to array elements,
check that they are non-null and that they point to the same array.

Examples

Subtraction Between Pointers to Elements in Different Arrays
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

 Subtraction or comparison between pointers to different arrays

3-505

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used
to determine how many free elements remain. Unless end points to a memory location
one past the last element of nums, the subtraction operation is undefined.

Subtract the pointer to the last element that was filled from the pointer to the last
element in the array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

3 Defects

3-506

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PTR_TO_DIFF_ARRAY
Impact: High
CWE ID: 469
CERT C ID: ARR36-C
ISO/IEC TS 17961 ID: ptrobj

See Also

Introduced in R2017b

 Subtraction or comparison between pointers to different arrays

3-507

https://cwe.mitre.org/data/definitions/469.html
https://www.securecoding.cert.org/confluence/x/LIDp

Tainted division operand
Division / operands from an unsecure source

Description
Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Examples

Division of Function Arguments
extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);

3 Defects

3-508

 return r;
}

This example function divides two argument variables, then prints and returns the
result. The argument values are unknown and can cause division by zero or integer
overflow.

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_DIVISION
Impact: Low
CWE ID: 190, 369
CERT C ID: API00-C, INT32-C, INT33-C
ISO/IEC TS 17961 ID: diverr

See Also
Integer division by zero | Float division by zero | Tainted modulo
operand

 Tainted division operand

3-509

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/cAI

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-510

Tainted modulo operand
Remainder % operands are from an unsecure source

Description
Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can
overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Examples

Modulo with Function Arguments
extern void print_int(int);

 Tainted modulo operand

3-511

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_MOD
Impact: Low
CWE ID: 369, 682
CERT C ID: API00-C, INT10-C, INT32-C, INT33-C
ISO/IEC TS 17961 ID: diverr, intoflow

See Also
Integer division by zero | Tainted division operand

3 Defects

3-512

http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/682.html
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/x/NQBi
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/cAI

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Tainted modulo operand

3-513

Tainted NULL or non-null-terminated string
Argument is from an unsecure source and may be NULL or not NULL-terminated

Description
Tainted NULL or non-null-terminated string looks for strings from unsecure
sources that are being used in string manipulation routines that implicitly dereference
the string buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-
null-terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated

3 Defects

3-514

• The size of the string matches the expected size.

Examples

Getting String from Input Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value
of userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

 Tainted NULL or non-null-terminated string

3-515

#define SIZE128 128

extern void print_str(const char*);

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Another possible correction is to call function errorMsg and warningMsg with specific
strings.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{

3 Defects

3-516

 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING
Impact: Low
CWE ID: 120, 170, 476, 822
CERT C ID: API00-C, ARR33-C, ENV01-C, FIO17-C, STR31-C, STR32-C, STR35-C
ISO/IEC TS 17961 ID: nonnullcs, taintstrcpy, taintformatio

See Also
Tainted string format

 Tainted NULL or non-null-terminated string

3-517

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/822.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/OIAc
https://www.securecoding.cert.org/confluence/x/-AC7AQ
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/KgE

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-518

Tainted sign change conversion
Value from an unsecure source changes sign

Description
Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive
number. The large positive number can create security vulnerabilities. For example, if
you use the unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

 Tainted sign change conversion

3-519

Examples

Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer,
causing a buffer overflow.

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {

3 Defects

3-520

 memset(str, 'c', size);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_SIGN_CHANGE
Impact: Medium
CWE ID: 194, 195
CERT C ID: API00-C, INT02-C, INT31-C, MEM04-C, MEM11-C, MSC21-C
ISO/IEC TS 17961 ID: taintsink

See Also
Sign change integer conversion overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Tainted sign change conversion

3-521

http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/EwDJAQ

Tainted size of variable length array
Size of the variable-length array (VLA) is from an unsecure source and may be zero,
negative, or too large

Description
Tainted size of variable length array detects variable length arrays (VLA) whose size
is from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Examples

Input Argument Used as Size of VLA
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

3 Defects

3-522

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_VLA_SIZE
Impact: Medium

 Tainted size of variable length array

3-523

CWE ID: 770, 789
CERT C ID: API00-C, ARR32-C, INT04-C, MEM04-C, MEM05-C
ISO/IEC TS 17961 ID: taintsink

See Also
Memory allocation with tainted size

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-524

http://cwe.mitre.org/data/definitions/770.html
http://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/eQo
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/bAAV

Tainted string format
Input format argument is from an unsecure source

Description
Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk
If you use externally controlled elements to format a string, you can cause buffer
overflow or data-representation problems. An attacker can use these string formatting
elements to view the contents of a stack using %x or write to a stack using %n.

Fix
Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Examples

Get Elements from User Input
#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

 Tainted string format

3-525

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING_FORMAT
Impact: Low
CWE ID: 134
CERT C ID: API00-C, FIO30-C
ISO/IEC TS 17961 ID: usrfmt

See Also
Tainted NULL or non-null-terminated string

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-526

http://cwe.mitre.org/data/definitions/134.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/WwE

Typedef mismatch
Mismatch between typedef statements

Description
Typedef mismatch detects typedef statements with different underlying types for
these fundamental types:

• size_t
• ssize_t
• wchar_t
• ptrdiff_t

Risk

If you change the underlying type of size_t, ssize_t, wchar_t, or ptrdiff_t, you
have inconsistent definitions of the same type. Compilation units with different include
paths can potentially use different-sized types causing conflicts in your program.

For example, say that you define a function in one compilation unit that redefines
size_t as unsigned long. But in another compilation unit that uses the size_t
definition from <stddef.h>, you use the same function as an extern declaration. Your
program will encounter a mismatch between the function declaration and function
definition.

Fix

Use consistent type definitions. For example:

• Remove custom type definitions for these fundamental types. Only use system
definitions.

• Use the same size for all compilation units. Move your typedef to a shared header
file.

 Typedef mismatch

3-527

Examples

Two Definitions of size_t
file1.c

typedef unsigned char size_t;

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

In this example, Polyspace flags the definition of size_t in file1.c as a defect. This
definition is a typedef mismatch because another file in your project, file2.c, includes
stddef.h, which defines size_t as unsigned long.

One possible correction is to use the system definition of size_t in stddef.h to avoid
conflicting type definitions.

file1.c

#include <stddef.h>

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

3 Defects

3-528

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

One possible correction is to use a shared header file to store your type definition that
gets included in both files.

types.h

typedef unsigned char size_t;

file1.c

#include "types.h"

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include "types.h"

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TYPEDEF_MISMATCH
Impact: High

 Typedef mismatch

3-529

See Also
Declaration mismatch

Introduced in R2016b

3 Defects

3-530

Umask used with chmod-style arguments
Argument to umask allows external user too much control

Description
Umask used with chmod-style arguments checks for umask commands that have an
argument specified in the style of arguments to chmod.

For new files, the umask value specifies which permissions not to set, in other words
which permissions to remove. The umask argument is bitwise-negated and then applied
to new file permissions.

In contrast, chmod sets the permissions as you specify them.

Risk

If you use chmod-style arguments, you specify opposite permissions of what you want.
This mistake can give external users unintended read/write access to new files and
folders.

Fix

Set the umask so that the user (u) has fewer permissions turned off than the group (g).
Set umask so that the group has fewer permissions turned off than other users (o), or u
<= g <= o.

You can see the umask value by calling,

umask

or the symbolic value by calling,

umask -S

 Umask used with chmod-style arguments

3-531

Examples

Setting the Default Mask
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(default_mode);
 return 0;
}

This example uses a function called my_umask to set the default mask mode. However,
the default_mode variable gives the permissions 666 or -rw-rw-rw. umask negates
this value. However, this negation means the default mask mode turns off read/write
permissions for the user, group users, and other outside users.

One possible correction is to negate the default_mode argument to my_umask. This
correction nullifies the negation umask for new files.

#include <stdio.h>
#include <assert.h>
#include <sys/types.h>

3 Defects

3-532

#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(~default_mode);
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_UMASK
Impact: Low
CWE ID: 560
CERT C ID: FIO06-C

See Also
Vulnerable permission assignments

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Umask used with chmod-style arguments

3-533

http://cwe.mitre.org/data/definitions/560.html
https://www.securecoding.cert.org/confluence/x/KQU

External Websites
umask — Linux Manual Page

Introduced in R2015b

3 Defects

3-534

http://man7.org/linux/man-pages/man2/umask.2.html

Uncleared sensitive data in stack
Variable in stack is not cleared and contains sensitive data

Description
Uncleared sensitive data in stack detects static memory containing sensitive data. If
you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

Risk

Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Examples

Static Buffer of Password Information
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

 Uncleared sensitive data in stack

3-535

In this example, a static buffer is filled with password information. The program frees
the stack memory at the end of the program. However, the data is still accessible from
the memory.

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_STACK_NOT_CLEARED
Impact: Medium
CWE ID: 226
CERT C ID: MEM03-C, MSC18-C

See Also
Sensitive heap memory not cleared before release | Sensitive data
printed out

3 Defects

3-536

http://cwe.mitre.org/data/definitions/226.html
https://www.securecoding.cert.org/confluence/x/4A8
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Uncleared sensitive data in stack

3-537

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL value

Description
Unprotected dynamic memory allocation occurs when the code does not check
whether or not the dynamic memory allocation succeeded.

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for the NULL value, this access is not
protected from failures.

Examples

Unprotected dynamic memory allocation error
#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

3 Defects

3-538

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: UNPROTECTED_MEMORY_ALLOCATION
Impact: Low
CWE ID: 789
CERT C ID: ERR33-C, FIO04-C, FIO33-C, MEM10-C, MEM11-C
ISO/IEC TS 17961 ID: liberr

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Unprotected dynamic memory allocation

3-539

http://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/sQCuAQ

Unreachable code
Code following control-flow statements

Description
Unreachable code defects occur on code which cannot be reached because the preceding
code.

Statements such as break, goto, and return, move the flow of the program to another
section or function. Because of this flow escape, the statements following the control-flow
code, statistically, do not execute, and therefore the statements are unreachable.

This check also finds code following trivial infinite loops, such as while(1). These types
of loops only release the flow of the program by exiting the program. This type of exit
causes code after the infinite loop to be unreachable.

Examples

Unreachable Code After Return
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

3 Defects

3-540

In this example, there are missing braces and misleading indentation. The first return
statement changes the flow of code back to where the function was called. Because of this
return statement, the if-block and second return statement do not execute.

If you correct the indentation and the braces, the error becomes clearer.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

One possible correction is to remove the escape statement. In this example, remove the
first return statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }

 if(card < HEARTS)
 {
 guess(card);
 }
 return card;
}

 Unreachable code

3-541

Another possible correction is to remove the unreachable code if you do not need it.
Because the function does not reach the second if-statement, removing it simplifies the
code and does not change the program behavior.
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }
 return card;
}

Infinite Loop Causing Unreachable Code
int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99){
 apple++;
 count++;
 }else{
 count--;
 }
 }
 return count;
}

In this example, the while(1) statement creates an infinite loop. The return count
statement following this infinite loop is unreachable because the only way to exit this
infinite loop is to exit the program.

One possible correction is to change the loop condition to make the while loop finite. In
the example correction here, the loop uses the statement from the if condition: apple <
99.

int add_apples1(int apple) {
 int count = 0;

3 Defects

3-542

 while(apple < 99) {
 apple++;
 count++;
 }
 if(count == 0)
 count = -1;
 return count;
}

Another possible correction is to add a break from the infinite loop, so there is a
possibility of reaching code after the infinite loop. In this example, a break is added to
the else block making the return count statement reachable.

int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 break;
 }
 }
 return count;
}

Another possible correction is to remove the unreachable code. This correction cleans up
the code and makes it easier to review and maintain. In this example, remove the return
statement and change the function return type to void.

void add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 }

 Unreachable code

3-543

 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: UNREACHABLE
Impact: Medium
CWE ID: 561
CERT C ID: MSC01-C, MSC07-C, MSC12-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Useless if

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-544

http://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description
Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of function pointer error
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;

 Unreliable cast of function pointer

3-545

 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

3 Defects

3-546

 return 0;
}

Check Information
Group: Static memory
Language: C/C++
Default: On
Command-Line Syntax: FUNC_CAST
Impact: Medium
CERT C ID: EXP37-C, MSC15-C
ISO/IEC TS 17961 ID: argcomptaintnoproto

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Unreliable cast of function pointer

3-547

https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/EoLu

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description
Unreliable cast of pointer occurs when a pointer is implicitly cast to a data type
different from its declaration type. Such an implicit casting can take place, for instance,
when a pointer to data type char is assigned the address of an integer.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of pointer error
 #include <string.h>

 void Copy_Integer_To_String()
 {
 int src[]={1,2,3,4,5,6,7,8,9,10};
 char buffer[]="Buffer_Text";
 strcpy(buffer,src);
 /* Defect: Implicit cast of (int*) to (char*) */
 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer,
implicitly casts src to char*.

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>
 void Copy_Integer_To_String()
 {
 /* Fix: Declare src with same type as buffer */
 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};
 char *buffer[10];

3 Defects

3-548

 for(int i=0;i<10;i++)
 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)
 buffer[i]= src[i];
 }

Check Information
Group: Static memory
Language: C
Default: On
Command-Line Syntax: PTR_CAST
Impact: Medium
CWE ID: 704, 843
CERT C ID: EXP36-C, EXP39-C, MSC15-C, STR38-C
ISO/IEC TS 17961 ID: alignconv, ptrcomp

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of function pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Unreliable cast of pointer

3-549

http://cwe.mitre.org/data/definitions/704.html
http://cwe.mitre.org/data/definitions/843.html
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/-QFqAQ
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/FADAAQ

Unsafe call to a system function
Unsanitized command argument has exploitable vulnerabilities

Description
Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix

Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

Examples

system() Called
include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {

3 Defects

3-550

SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the
command processor to execute. This code is vulnerable to an attack by command-
injection.

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 Unsafe call to a system function

3-551

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_SYSTEM_CALL
Impact: High
CWE ID: 78, 88
CERT C ID: ENV33-C
ISO/IEC TS 17961 ID: syscall

See Also
Command executed from externally controlled path | Execution of
externally controlled command

Introduced in R2017b

3 Defects

3-552

http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
https://www.securecoding.cert.org/confluence/x/1IAg

Unsafe conversion between pointer and integer
Misaligned or invalid results from conversions between pointer and integer types

Description
Unsafe conversion between pointer and integer checks for pointer to integer and
integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk

The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

 Unsafe conversion between pointer and integer

3-553

Examples

Integer to Pointer Conversions
unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_INT_PTR_CAST
Impact: Medium
CWE ID: 465, 466, 587, 758
CERT C ID: INT36-C

3 Defects

3-554

https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/XAAV

ISO/IEC TS 17961 ID: intptrconv

Introduced in R2016b

 Unsafe conversion between pointer and integer

3-555

Unsafe conversion from string to numerical value
String to number conversion without validation checks

Description
Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix
• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Examples

Conversion With atoi
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else

3 Defects

3-556

 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);

 Unsafe conversion from string to numerical value

3-557

 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STR_TO_NUMERIC
Impact: Low
CWE ID: 20, 676
CERT C ID: INT06-C

Introduced in R2016b

3 Defects

3-558

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/676.html

Unsafe standard encryption function
Function is not reentrant or uses a risky encryption algorithm

Description
Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky
Data Encryption Standard (DES).

Risk

The use of a broken, weak, or nonstandard algorithm can expose sensitive information to
an attacker. A determined hacker can access the protected data using various
techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs,
there is an additional race condition risk.

Fix

Avoid functions that use these encryption algorithms. Instead, use a reentrant function
that uses a stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure,
encryption algorithms.

Examples

Decrypting Password Using crypt
#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>

 Unsafe standard encryption function

3-559

#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is
nonreentrant and uses the unsafe Data Encryption Standard algorithm.

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

3 Defects

3-560

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_CRYPT
Impact: Medium
CWE ID: 327, 663
CERT C ID: MSC18-C

 Unsafe standard encryption function

3-561

http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/663.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Vulnerable pseudo-random number
generator

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-562

Unsafe standard function
Function unsafe for security-related purposes

Description
Unsafe standard function looks for functions that are unsafe and must not be used for
security-related programming. Functions can be unsafe for many reasons. Some
functions are unsafe because they are nonreentrant. Other functions change depending
on the target or platform, making some implementations unsafe.

Risk

Some unsafe functions are not reentrant, meaning that the contents of the function are
not locked during a call. So, an attacker can change the values midstream.

getlogin specifically can be unsafe depending on the implementation. Some
implementations of getlogin return only the first eight characters of a log-in name. An
attacker can use a different login with the same first eight characters to gain entry and
manipulate the program.

Fix

Avoid unsafe functions for security-related purposes. If you cannot avoid unsafe
functions, use a safer version of the function instead. For getlogin, use getlogin_r.

Examples

Using getlogin
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>

 Unsafe standard function

3-563

#include <stdlib.h>

volatile int rd = 1;

int login_name_check(char *user)
{
 int r = -2;
 char *name = getlogin();
 if (name != NULL)
 {
 if (strcmp(name, user) == 0)
 {
 r = 0;
 }
 else
 r = -1;
 }

 return r;
}

This example uses getlogin to compare the user name of the current user to the given
user name . However, getlogin can return something other than the current user name
because a parallel process can change the string.

One possible correction is to use getlogin_r instead of getlogin. getlogin_r is
reentrant, so you can trust the result.

#define _POSIX_C_SOURCE 199506L // use of getlogin_r
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>
#include <stdlib.h>

volatile int rd = 1;

enum { NAME_MAX_SIZE=64 };

int login_name_check(char *user)

3 Defects

3-564

{
 int r;
 char name[NAME_MAX_SIZE];

 if (getlogin_r(name, sizeof(name)) == 0)
 {
 if ((strlen(user) < sizeof(name)) &&
 (strncmp(name, user, strlen(user)) == 0))
 {
 r = 0;
 }
 else
 r = -1;
 }
 else
 r = -2;
 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_FUNC
Impact: Medium
CWE ID: 558, 663

See Also
Use of obsolete standard function | Use of dangerous standard function
| Invalid use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Unsafe standard function

3-565

http://cwe.mitre.org/data/definitions/558.html
http://cwe.mitre.org/data/definitions/663.html

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description
Unsigned integer conversion overflow occurs when converting an unsigned integer
to a smaller unsigned integer type. If the variable does not have enough bytes to
represent the original constant, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char
unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value
plus 1. In this example, unum is reduced by modulo 2^8 because a character data type
can only represent 2^8-1.

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

3 Defects

3-566

 return (unsigned long)unum;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: UINT_CONV_OVFL
Impact: Low
CWE ID: 190, 191, 197
CERT C ID: FLP34-C, INT02-C, INT18-C, INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Integer conversion overflow | Sign change
integer conversion overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Unsigned integer conversion overflow

3-567

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/197.html
https://www.securecoding.cert.org/confluence/x/kgAV
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE

Unsigned integer overflow
Overflow from operation between unsigned integers

Description
Unsigned integer overflow occurs when an operation on unsigned integer variables
exceeds the space available to represent the resulting value. The exact storage allocation
for different integer types depends on your processor. See Target processor type (-
target).

Examples

Add One to Maximum Unsigned Integer
#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is
reduced by modulo UINT_MAX. The result is uvar = 1.

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.
#include <limits.h>

3 Defects

3-568

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_OVFL
Impact: Low
CWE ID: 190, 191
CERT C ID: INT18-C, INT30-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Float overflow

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Unsigned integer overflow

3-569

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/tIPu

Unused parameter
Function prototype has parameters not read or written in function body

Description
Unused parameter occurs when a function parameter is neither read nor written in the
function body.

Risk

Unused function parameters cause the following issues:

• Indicate that the code is possibly incomplete. The parameter is possibly intended for
an operation that you forgot to code.

• If the copied objects are large, redundant copies can slow down performance.

Fix

Determine if you intend to use the parameters. Otherwise, remove parameters that you
do not use in the function body.

You can intentionally have unused parameters. For instance, you have parameters that
you intend to use later when you add enhancements to the function. Add a code comment
indicating your intention for later use. The code comment helps you or a code reviewer
understand why your function has unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the
unused parameter. You can define a macro that expands to this statement and add the
macro to the function body.

3 Defects

3-570

Examples

Unused Parameter
void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

One possible correction is to check if you intended to use the parameter. Fix your code if
you intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

 Unused parameter

3-571

Another possible correction is to explicitly indicate that you are aware of the unused
parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {
 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: UNUSED_PARAMETER
Impact: Low
CERT C ID: MSC13-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-572

https://www.securecoding.cert.org/confluence/x/QYA5

Useless if
Unnecessary if conditional

Description
Useless if occurs on if-statements where the condition is always true. This defect occurs
only on if-statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code
execution if the if-statement is removed.

Examples

if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card < 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression
card < 7 always evaluates to true because card can be at most 5. The if statement is
unnecessary.

 Useless if

3-573

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to UNKNOWN_SUIT to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card > UNKNOWN_SUIT) {
 do_something(card);
 }
}

Another possible correction is to remove the if-condition in the code. Because the
condition is always true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 do_something(card);
}

Check Information
Group: Data flow
Language: C | C++
Default: On

3 Defects

3-574

Command-Line Syntax: USELESS_IF
Impact: Medium

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Unreachable
code

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Useless if

3-575

Use of automatic variable as putenv-family function
argument
putenv-family function argument not accessible outside its scope

Description
Use of automatic variable as putenv-family function argument occurs when the
argument of a putenv-family function is a local variable with automatic duration.

Risk
The function putenv(char *string) inserts a pointer to its supplied argument into
the environment array, instead of making a copy of the argument. If the argument is an
automatic variable, its memory can be overwritten after the function containing the
putenv() call returns. A subsequent call to getenv() from another function returns the
address of an out-of-scope variable that cannot be dereferenced legally. This out-of-scope
variable can cause environment variables to take on unexpected values, cause the
program to stop responding, or allow arbitrary code execution vulnerabilities.

Fix
Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use
putenv-family function arguments with dynamically allocated memory, or, if your
application has no reentrancy requirements, arguments with static duration. For
example, a single thread execution with no recursion or interrupts does not require
reentrancy. It cannot be called (reentered) during its execution.

Examples

Automatic Variable as Argument of putenv()
#include <stdio.h>
#include <stdlib.h>

3 Defects

3-576

#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of
the environment variable TEST is then set to var by using putenv(). Because env is an
automatic variable, the value of TEST can change once func() returns.

Declare env as a static-duration variable. The memory location of env is not overwritten
for the duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);

 Use of automatic variable as putenv-family function argument

3-577

 if (retval != 0) {
 /* Handle error */
 }
}

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */
 }
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PUTENV_AUTO_VAR
Impact: High
CWE ID: 562, 686
CERT C ID: POS34-C
ISO/IEC TS 17961 ID: addrescape

See Also
Pointer or reference to stack variable leaving scope

Introduced in R2017b

3 Defects

3-578

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/HoAg

Use of dangerous standard function
Dangerous functions cause possible buffer overflow in destination buffer

Description
The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The
following table lists possibly dangerous functions, the risks of using each function, and
what function to use instead.
Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You
cannot control the length of input
from the console.

fgets

cin Inherently dangerous — You
cannot control the length of input
from the console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

 Use of dangerous standard function

3-579

Dangerous
Function

Risk Level Safer Function

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

3 Defects

3-580

Examples

Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 Use of dangerous standard function

3-581

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_STD_FUNC
Impact: Low
CWE ID: 242, 676
CERT C ID: API02-C, ARR33-C, ENV01-C, PRE09-C, STR07-C, STR08-C, STR31-C,
STR35-C
ISO/IEC TS 17961 ID: taintformatio

See Also
Use of obsolete standard function | Unsafe standard function | Invalid
use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-582

http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/676.html
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/OIAc
https://www.securecoding.cert.org/confluence/x/iwD3
https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/CIEAAQ
https://www.securecoding.cert.org/confluence/x/KAE

Use of externally controlled environment variable
Value of environment variable from an unsecure source

Description
Use of externally controlled environment variable checks for functions that add or
change environment variables, such as putenv and setenv. If the new environment
variable value is from an unsecure source, Polyspace raises a defect on the function or
function pointer.

Risk
If the environment variable is tainted, an attacker can control your system settings. This
control can disrupt an application or service in potentially malicious ways.

Fix
Before using the new environment variable, check its value to avoid giving control to
external users.

Examples

Set Path in Environment
#define _XOPEN_SOURCE
#define _GNU_SOURCE
#include "stdlib.h"

void taintedenvvariable(char* path)
{
 putenv(path);
}

In this example, putenv changes an environment variable. The path path has not been
checked to make sure that it is the intended path.

 Use of externally controlled environment variable

3-583

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _XOPEN_SOURCE
#define _GNU_SOURCE
#define SIZE128 128
#include "stdlib.h"
#include "string.h"

/* Function to sanitize a string */
int sanitize_str(char* str, size_t n) {
 int res = 0;

 if (str && n > 0 && n < SIZE128) {
 /* string is not NULL, with size between 1 and max */
 str[n-1] = '\0'; /* Add a null char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

void taintedenvvariable(char* path, size_t n)
{
 if (sanitize_str(path, n))
 {
 unsigned int n2 = strlen("PATH=")+strnlen(path, n);
 char *env_path = (char *)malloc(n2+1);
 if (env_path)
 {
 strcpy(env_path, "PATH=");
 strncat(env_path, path, n2);
 putenv(env_path);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ENV_VARIABLE

3 Defects

3-584

Impact: Medium
CWE ID: 15
CERT C ID: API00-C

See Also
Execution of externally controlled command | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Use of externally controlled environment variable

3-585

http://cwe.mitre.org/data/definitions/15.html
https://www.securecoding.cert.org/confluence/x/egAV

Use of indeterminate string
Use of buffer from fgets-family function

Description
Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the
function fails.

Examples

Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

3 Defects

3-586

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */

 Use of indeterminate string

3-587

 display_text(buf);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INDETERMINATE_STRING
Impact: Medium
CERT C ID: FIO40-C

See Also
Invalid use of standard library string routine | Returned value of a
sensitive function not checked | Use of dangerous standard function

Introduced in R2017b

3 Defects

3-588

https://www.securecoding.cert.org/confluence/x/ygA1

Use of memset with size argument zero
Size argument of function in memset family is zero

Description
Use of memset with size argument zero occurs when you call a function in the
memset family with size argument zero. Functions include memset, wmemset, bzero,
SecureZeroMemory, RtlSecureZeroMemory, and so on.

Risk

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. A zero value of num
renders the call to memset redundant. The memory that ptr points to:

• Remains uninitialized, if not previously initialized.
• Is not cleared and can contain sensitive data, if previously initialized.

Fix

Determine if the zero size argument occurs because of a previous error in your code. Fix
the error.

Examples

Zero Size Argument of memset
#include <stdio.h>
#include <string.h>

void func (unsigned int size)
{
 char str[] = "Buffer to be filled.";
 memset (str,'-',size);

 Use of memset with size argument zero

3-589

 puts (str);
}

void calling_func(void) {
 unsigned int buf_size=0;
 func(buf_size);
}

In this example, the argument size of memset is zero.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_SIZE
Impact: Medium
CWE ID: 665
CERT C ID: MSC12-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Call to memset with unintended value

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-590

http://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/NYA5

Use of non-secure temporary file
Temporary generated file name not secure

Description
Use of non-secure temporary file looks for temporary file routines that are not
secure.

Risk

If an attacker guesses the file name generated by a standard temporary file routine, the
attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads

the file, the attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to

the temporary file, the sensitive data is deleted.

Fix

To create temporary files, use a more secure standard temporary file routine, such as
mkstemp from POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp,
use the exclusion flag O_EXCL to avoid race conditions.

Examples

Temp File Created With tempnam
#define _BSD_SOURCE
#define _XOPEN_SOURCE

 Use of non-secure temporary file

3-591

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary
file. The file is opened without exclusive privileges. An attacker can access the file
causing various risks on page 3-591.

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE

3 Defects

3-592

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: NON_SECURE_TEMP_FILE
Impact: High
CWE ID: 377

 Use of non-secure temporary file

3-593

http://cwe.mitre.org/data/definitions/377.html

CERT C ID: FIO03-C, FIO21-C

See Also
Data race

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-594

https://www.securecoding.cert.org/confluence/x/0gk
https://www.securecoding.cert.org/confluence/x/Tx

Use of obsolete standard function
Obsolete routines can cause security vulnerabilities and portability issues

Description
Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.
1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.
1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

 Use of obsolete standard function

3-595

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread

3 Defects

3-596

Obsolete Function Standards Risk Replacement
Function

getwd Marked legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 getcwd

index Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.

1-2001, removed in POSIX.
1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in POSIX.
1-2001, removed in POSIX.
1-2008

 snprintf

rand_r Marked as obsolete in POSIX.
1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

 strrchr

 Use of obsolete standard function

3-597

Obsolete Function Standards Risk Replacement
Function

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose
origin is unclear

 sigprocmask

sigmask 4.3BSD signal API whose
origin is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose
origin is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose
origin is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX
threads.

tmpnam and
tmpnam_r

Marked as obsolete in POSIX.
1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.

1-2008 marks as obsolete.

3 Defects

3-598

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

Examples

Printing Out Time
#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

 Use of obsolete standard function

3-599

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: OBSOLETE_STD_FUNC
Impact: Low
CWE ID: 477
CERT C ID: MSC24-C, MSC33-C, POS33-C, PRE09-C

See Also
Use of dangerous standard function | Unsafe standard function | Invalid
use of standard library string routine

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3 Defects

3-600

http://cwe.mitre.org/data/definitions/477.html
https://www.securecoding.cert.org/confluence/x/LwDpAQ
https://www.securecoding.cert.org/confluence/x/CgCuAQ
https://www.securecoding.cert.org/confluence/x/EgAa
https://www.securecoding.cert.org/confluence/x/iwD3

Introduced in R2015b

 Use of obsolete standard function

3-601

Use of path manipulation function without maximum
sized buffer checking
Destination buffer of getwd or realpath is smaller than PATH_MAX bytes

Description
Use of path manipulation function without maximum-sized buffer checking
occurs when the destination argument of a path manipulation function such as
realpath or getwd has a buffer size less than PATH_MAX bytes.

Risk

A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function
return value to determine if an overflow occurred. If an overflow occurs, following the
function call, the content of the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current
folder to its argument. If the length of the absolute path name is greater than PATH_MAX
bytes, getwd returns NULL and the content of *buf is undefined. You can test the return
value of getwd for NULL to see if the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur
for a smaller absolute path name. In this case, getwd does not return NULL even though
a failure occurred. Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix

Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source,
before using the buffer as argument of getwd or realpath function, make sure that
the size is less than PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

3 Defects

3-602

For instance, if you are using getwd to get the absolute path name of the current
folder, use char *getcwd(char *buf, size_t size); instead. The additional
argument size allows you to specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path);
dynamically allocates memory if resolved_path is NULL. However, you have to
deallocate this memory later using the free function.

Examples

Possible Buffer Overflow in Use of getwd Function
#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is
buf + 1, whose allowed buffer is less than PATH_MAX bytes.

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

 Use of path manipulation function without maximum sized buffer checking

3-603

Result Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: PATH_BUFFER_OVERFLOW
Impact: High
CWE ID: 785
ISO/IEC TS 17961 ID: libptr

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-604

http://cwe.mitre.org/data/definitions/785.html

Use of plain char type for numerical value
Plain char variable in arithmetic operation without explicit signedness

Description
Use of plain char type for numerical value detects char variables without explicit
signedness that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned
depending on your compiler.

Risk
Operations on a plain char can result in unexpected numerical values. If the char is used
as an offset, the char can cause buffer overflow or underflow.

Fix
When initializing a char variable, to avoid implementation-defined confusion, explicitly
state whether the char is signed or unsigned.

Examples

Divide by char Variable
#include <stdio.h>

 Use of plain char type for numerical value

3-605

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

In this example, the char variable c can be signed or unsigned depending on your
compiler. Assuming 8-bit, two's complement character types, the result is either i/c = 5
(unsigned char) or i/c = -17 (signed char). The correct result is unknown without
knowing the signedness of char.

One possible correction is to add a signed qualifier to char. This clarification makes the
operation defined.

#include <stdio.h>

void badplaincharuse(void)
{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PLAIN_CHAR_USE
Impact: Medium
CWE ID: 682, 758
CERT C ID: INT07-C

Introduced in R2016b

3 Defects

3-606

https://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/-As

Use of previously closed resource
Function operates on a previously closed stream

Description
Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it. Operations using the FILE* pointer can produce
unintended results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Examples

Use of FILE* Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

 Use of previously closed resource

3-607

In this example, fclose closes the stream associated with fp. When you use fprintf
on fp after fclose, the Use of previously closed resource defect appears.

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: CLOSED_RESOURCE_USE
Impact: High
CWE ID: 672
CERT C ID: FIO46-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 22.6

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

3 Defects

3-608

http://cwe.mitre.org/data/definitions/672.html
https://www.securecoding.cert.org/confluence/x/KAGQBw

Introduced in R2015b

 Use of previously closed resource

3-609

Use of previously freed pointer
Memory accessed after deallocation

Description
Use of previously freed pointer occurs when a block of memory is accessed after it is
freed using the free function.

Examples

Use of Previously Freed Pointer Error
#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

One possible correction is to free the pointer pi only after the last instance where it is
accessed.
#include <stdlib.h>

3 Defects

3-610

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: FREED_PTR
Impact: High
CWE ID: 416
CERT C ID: MEM00-C, MEM30-C
ISO/IEC TS 17961 ID: accfree, dblfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Deallocation of previously deallocated pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Use of previously freed pointer

3-611

http://cwe.mitre.org/data/definitions/416.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/vAE

Introduced in R2013b

3 Defects

3-612

Use of setjmp/longjmp
setjmp and longjmp cause deviation from normal control flow

Description
Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal
mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely.
Alternatively, use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

 Use of setjmp/longjmp

3-613

Examples

Use of setjmp and longjmp
#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

To emulate the same behavior more securely, use a volatile global variable instead of
a combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

3 Defects

3-614

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SETJMP_LONGJMP_USE
Impact: Low
CWE ID: 691
CERT C ID: MSC22-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

 Use of setjmp/longjmp

3-615

http://cwe.mitre.org/data/definitions/691.html
https://www.securecoding.cert.org/confluence/x/rgCMAg

External Websites
Linux man page for setjmp

Introduced in R2015b

3 Defects

3-616

http://man7.org/linux/man-pages/man3/setjmp.3.html

Use of tainted pointer
Pointer from an unsecure source may be NULL or point to unknown memory

Description
Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-
terminated string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk

An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

 Use of tainted pointer

3-617

Fix

If you expect a valid memory location, check that the pointer is not NULL. Also, check
the size of the memory location. This second check validates whether the size of the data
the pointer points to matches the size your program expects.

Examples

Function to Change Pointer
void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

One possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

3 Defects

3-618

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR
Impact: Low
CWE ID: 822
CERT C ID: API00-C, API02-C, ARR30-C, ARR38-C, EXP34-C, MEM10-C, MSC15-C
ISO/IEC TS 17961 ID: invptr, nullref

See Also
Pointer dereference with tainted offset

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Use of tainted pointer

3-619

http://cwe.mitre.org/data/definitions/822.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/EoLu

Variable length array with nonpositive size
Size of variable-length array is zero or negative

Description
Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is
positive.

• If you use the result of a computation on a function parameter as the array size, check
that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

Examples

Nonpositive Array Size
int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];

3 Defects

3-620

 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

One possible correction is fix or remove calls that result in a nonpositive array size.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: NON_POSITIVE_VLA_SIZE
Impact: High
CWE ID: 687
CERT C ID: MEM04-C, MEM05-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Variable length array with nonpositive size

3-621

http://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/bAAV

Variable shadowing
Variable hides another variable of same name with nested scope

Description
Variable shadowing occurs when a variable hides another variable of the same name
with nested scope.

Examples

Variable Shadowing Error
#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

3 Defects

3-622

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VAR_SHADOWING
Impact: Low
CERT C ID: DCL01-C

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Variable shadowing

3-623

https://www.securecoding.cert.org/confluence/x/VwE

Vulnerable path manipulation
Path argument with /../, /abs/path/, or other unsecure elements

Description
Vulnerable path manipulation detects relative or absolute path traversals. If the path
traversal contains a tainted source, or you use the path to open/create files, Bug Finder
raises a defect.

Risk

Relative path elements, such as ".." can resolve to locations outside the intended folder.
Absolute path elements, such as "/abs/path" can also resolve to locations outside the
intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the
file system and access other files or folders.

Fix

Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file
names and locations wherever possible.

Examples

Relative Path Traversal
include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>

3 Defects

3-624

include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external
user can manipulate this relative path when fopen opens the file.

One possible correction is to use a fixed file name instead of a relative path. This example
uses file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;

 Vulnerable path manipulation

3-625

 char data_buf[FILENAME_MAX] = BASEPATH;
 data = data_buf;

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PATH_TRAVERSAL
Impact: Low
CWE ID: 22, 23, 36
CERT C ID: FIO02-C

See Also
Use of path manipulation function without maximum sized buffer
checking

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-626

http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
https://www.securecoding.cert.org/confluence/x/EAY

Vulnerable permission assignments
Argument gives read/write/search permissions to external users

Description
Vulnerable permission assignments looks at functions that can change file
permissions, such as chmod, umask, creat, or open. If the specified permissions allow
unintended actors to modify or read the resource, Bug Finder flags the functions as a
defect.

Risk

If you give outside users or outside groups a wider range or permissions than required,
you potentially expose your sensitive information and your modifications. This defect is
especially dangerous for permissions related to:

• Program configurations
• Program executions
• Sensitive user data

Fix

Set your permissions so that the user (u) has more permissions than the group (g), and so
the group has more permissions than other users (o), or u >= g >= o.

Examples

Create File with Other Permissions
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

 Vulnerable permission assignments

3-627

void bug_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IROTH | S_IXOTH | S_IWOTH;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

In this example, the log_path file is created with more rights for the other outside
users, than the current user. The permissions are ---------rwx.

One possible correction is to modify the user permissions for the file. In this correction,
the user has read/write/execute permissions, but other users do not.

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void corrected_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IRUSR | S_IXUSR | S_IWUSR;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_PERMISSIONS
Impact: Medium

3 Defects

3-628

CWE ID: 732
CERT C ID: FIO06-C

See Also
Umask used with chmod-style arguments

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Vulnerable permission assignments

3-629

http://cwe.mitre.org/data/definitions/732.html
https://www.securecoding.cert.org/confluence/x/KQU

Vulnerable pseudo-random number generator
Using a cryptographically weak pseudo-random number generator

Description
The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r

equivalents such as drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix

Use more cryptographically sound random number generators, such as
CryptGenRandom (Windows), OpenSSL/RAND_bytes(Linux/UNIX).

Examples

Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

3 Defects

3-630

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);

 Vulnerable pseudo-random number generator

3-631

 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: VULNERABLE_PRNG
Impact: Medium
CWE ID: 330, 338
CERT C ID: MSC30-C

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Unsafe standard encryption function

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

3 Defects

3-632

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/qw4

Weak cipher algorithm
Encryption algorithm associated with the cipher context is weak

Description
Weak cipher algorithm occurs when you associate a weak encryption algorithm with
the cipher context.

Risk

Some encryption algorithms have known flaws. Though the OpenSSL library still
supports the algorithms, you must avoid using them.

If your cipher algorithm is weak, an attacker can decrypt your data by exploiting a
known flaw or brute force attacks.

Fix

Use algorithms that are well-studied and widely acknowledged as secure.

For instance, the Advanced Encryption Standard (AES) is a widely accepted cipher
algorithm.

Examples

Use of DES Algorithm

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 Weak cipher algorithm

3-633

 const EVP_CIPHER * ciph = EVP_des_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_des_cbc() invokes the Data Encryption Standard
(DES) algorithm, which is now considered as non-secure and relatively slow.

One possible correction is to use the faster and more secure Advanced Encryption
Standard (AES) algorithm instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_CIPHER
Impact: Medium
CWE ID: 310, 326, 327

Introduced in R2017a

3 Defects

3-634

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/327.html

Weak cipher mode
Encryption mode associated with the cipher context is weak

Description
Weak cipher mode occurs when you associate a weak block cipher mode with the cipher
context.

The cipher mode that is especially flagged by this defect is the Electronic Code Book
(ECB) mode.

Risk

The ECB mode does not support protection against dictionary attacks.

An attacker can decrypt your data even using brute force attacks.

Fix

Use a cipher mode more secure than ECB.

For instance, the Cipher Block Chaining (CBC) mode protects against dictionary attacks
by:

• XOR-ing each block of data with the encrypted output from the previous block.
• XOR-ing the first block of data with a random initialization vector (IV).

Examples

Use of ECB Mode

#include <openssl/evp.h>

 Weak cipher mode

3-635

#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_ecb();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_aes_128_ecb() invokes the Advanced Encryption
Standard (AES) algorithm in the Electronic Code Book (ECB) mode. The ECB mode does
not support protection against dictionary attacks.

One possible correction is to use the Cipher Block Chaining (CBC) mode instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_MODE
Impact: Medium
CWE ID: 310, 326, 327

Introduced in R2017a

3 Defects

3-636

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/327.html

Write without a further read
Variable never read after assignment

Description
Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before
reading the previous value. The first write operation is redundant.

Examples

Write Without Further Read Error
void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 Write without a further read

3-637

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: USELESS_WRITE
Impact: Low
CWE ID: 398
CERT C ID: DCL22-C, MSC13-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 2.2

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-638

http://cwe.mitre.org/data/definitions/398.html
https://www.securecoding.cert.org/confluence/x/OoEt
https://www.securecoding.cert.org/confluence/x/QYA5

Writing to const qualified object
Object declared with a const qualifier is modified

Description
Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:
Situation Risk Fix
You pass a const-qualified
object as first argument of
one of the following
functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

These functions replace the
last six characters of their
first argument with a
string. Therefore, they
expect a modifiable char
array as their first
argument.

Pass a non-const object as
first argument of the
function.

You pass a const-qualified
object as the destination
argument of one of the
following functions:

• strcpy
• strncpy
• strcat
• memset

These functions modify
their destination argument.
Therefore, they expect a
modifiable char array as
their destination argument.

Pass a non-const object as
destination argument of the
function.

 Writing to const qualified object

3-639

Situation Risk Fix
You perform a write
operation on a const-
qualified object.

The const qualifier implies
an agreement that the value
of the object will not be
modified. By writing to a
const-qualified object, you
break the agreement. The
result of the operation is
undefined.

Perform the write operation
on a non-const object.

Examples

Writing to const-Qualified Object
#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)

3 Defects

3-640

 strcpy(ptr,string);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CONSTANT_OBJECT_WRITE
Impact: High
CWE ID: 227, 471, 686
CERT C ID: EXP40-C, MSC15-C, STR05-C, STR06-C, STR30-C
ISO/IEC TS 17961 ID: strmod

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Writing to const qualified object

3-641

http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/471.html
http://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/gAU
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/mwAV
https://www.securecoding.cert.org/confluence/x/owAV
https://www.securecoding.cert.org/confluence/x/TQE

Writing to read-only resource
File initially opened as read only is modified

Description
Writing to read-only resource occurs when you attempt to write to a file that you
have opened earlier in read-only mode.

For instance, you open a file using fopen with the access mode argument r. You write to
that file with a function in the fprintf family.

Risk

Writing to a read-only file causes undefined behavior.

Fix

If you want to write to the file, open the file in a mode that is suitable for writing.

Examples

Writing to Read-Only File
#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "r");
 fprintf(fp, "Some data");
 fclose(fp);
}

3 Defects

3-642

In this example, the file file.txt is opened in read-only mode. When the FILE pointer
associated with file.txt is used as an argument of fprintf, a Writing to read-only
resource defect occurs.

One possible correction is to use the access specifier "a" instead of "r". file.txt is
now open for output at the end of the file.

#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "a");
 fprintf(fp, "Some data");
 fclose(fp);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: READ_ONLY_RESOURCE_WRITE
Impact: High

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2015b

 Writing to read-only resource

3-643

Wrong allocated object size for cast
Allocated memory does not match destination pointer

Description
Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is unaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Examples

Dynamic Allocation of Pointers
#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long* in line
5. The dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of
dest, 4 bytes. This misalignment causes the Wrong allocated object size for cast
defect.

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

3 Defects

3-644

 dest = (long*)ptr;
}

Static Allocation of Pointers
void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the size of the array arr to a multiple of
4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Allocation with a Function
#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){

 Wrong allocated object size for cast

3-645

 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In
line 12, the same function call, my_alloc(13), does not call a defect for the conversion
to dest2 because the size of char*, 1 byte, a divisor of 13.

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the argument for my_alloc to a multiple
of 4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Static Memory
Language: C | C++
Default: Off
Command-Line Syntax: OBJECT_SIZE_MISMATCH
Impact: High

3 Defects

3-646

CWE ID: 704
CERT C ID: EXP36-C, MEM02-C, STR38-C
ISO/IEC TS 17961 ID: ALIGNCONV, INSUFMEM

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

 Wrong allocated object size for cast

3-647

http://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/gwg
https://www.securecoding.cert.org/confluence/x/FADAAQ

Wrong type used in sizeof
sizeof argument does not match pointed type

Description
Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between
two blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data
between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*))
instead of malloc(sizeof(type)).

Rationale

Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation
of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required size
is much greater than the actual allocated size of four bytes.

3 Defects

3-648

Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

Examples

Allocate a Char Array With sizeof
void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five
char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PTR_SIZEOF_MISMATCH

 Wrong type used in sizeof

3-649

Impact: High
CWE ID: 467
CERT C ID: ARR00-C, ARR01-C, EXP01-C, MEM02-C, MEM35-C
ISO/IEC TS 17961 ID: insufmem

See Also
Find defects (-checkers)

Topics
“Navigate to Root Cause of Defect”
“Review and Fix Results”

Introduced in R2013b

3 Defects

3-650

http://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/gwg
https://www.securecoding.cert.org/confluence/x/2wE

Functions, Properties, Classes, and Apps

4

pslinkfun
Manage model analysis at the command line

Syntax
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)
prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')
pslinkfun('enablebacktomodel')
pslinkfun('help')
pslinkfun('metrics')
pslinkfun('jobmonitor')
pslinkfun('stop')

Description
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a severity classification, an action status, or
other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

4 Functions, Properties, Classes, and Apps

4-2

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:To Fix>*/
annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:To Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated
with the model or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the Simulink
plug-in. If your Polyspace results do not properly link to back to the model blocks, run
this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use
this option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

 pslinkfun

4-3

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option
for local analyses only.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

In the example model WhereAreTheErrors, add an annotation to the switch block for
MISRA C rule 13.7 violations with a comment, a severity, and a status.

model = 'WhereAreTheErrors';
open(model)
pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...
 'WhereAreTheErrors/Switch1','status','to fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the
results in the Polyspace environment:

slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
opts.VerificationSettings = 'PrjConfigAndMisra';
pslinkrun(model,opts)
pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to
the switch block. The annotations appear in the Status and Comment columns.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

4 Functions, Properties, Classes, and Apps

4-4

Load the model WhereAreTheErrors and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...
 'WhereAreTheErrors_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =
C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Run Polyspace, then open the Job Monitor to monitor your remote job.

 pslinkfun

4-5

pslinkrun(model,opts)
pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

pslinkfun('metrics')

Input Arguments
typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• 'DEFECT' for defects.
• 'MISRA-C' for MISRA C coding rule violations (C code only).
• 'MISRA-AC-AGC' for MISRA C coding rule violations (C code only).
• 'MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
• 'JSF' for JSF C++ coding rule violations (C++ code only).

Example: 'type','MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.
type Value kind Values
'DEFECT' Use the abbreviation associated with the type of defect that you

want to annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Polyspace Bug Finder
Results”.

4 Functions, Properties, Classes, and Apps

4-6

type Value kind Values
'MISRA-C' Use the rule number that you want to annotate. For example,

'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-AC-AGC' Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-CPP' Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers,
see “MISRA C++ Coding Rules”.

'JSF' Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')
Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If
psprjFile is empty, Polyspace uses the standard Polyspace template file. New
Polyspace projects start with this project configuration.

 pslinkfun

4-7

Example: pslinkfun('settemplate', fullfile(matlabroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder_Example',
'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'block','MyModel\Sum', 'status','to fix'

block — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.
Example: 'block','MyModel\Sum'

class — severity of the check
'high' | 'medium' | 'low' | 'not a defect' | 'unset'

Severity of the check specified as high, medium, low, not a defect, or unset.
Example: 'class','high'

status — action status
'undecided' | 'to investigate' | 'to fix' | 'justified' | 'no action
planned' | 'other'

Action status of the check specified as to investigate, to fix, justified, no
action planned, or other.
Example: 'status','no action planned'

comment — additional comments
character vector

Additional comments specified as a character vector. The comments provide more
information about why the results are justified.

4 Functions, Properties, Classes, and Apps

4-8

Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkfun

4-9

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration
options for the S-Function.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace® options object from the model:

load_system('psdemo_model_link_sl');
model_opt = pslinkoptions('psdemo_model_link_sl')

model_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1

4 Functions, Properties, Classes, and Apps

4-10

 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder®, so only the Embedded Coder
configuration options appear.

Change the results folder name option and set OpenProjectManager to true.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0

 pslinkoptions

4-11

 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder® parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

To Follow the progress in the Polyspace interface, set the OpenProjectManager option
to true. Change the configuration to check for both checks and MISRA C® 2012 coding
rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'

4 Functions, Properties, Classes, and Apps

4-12

 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

 pslinkoptions

4-13

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

4 Functions, Properties, Classes, and Apps

4-14

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with
the configuration options of that model. If you have not set any options, the object has the
default configuration options. If you have set a code generator, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object
with the configuration options for the S-function. If you have not set any options, the
object has the default configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

 pslinkoptions

4-15

See Also
pslinkfun | pslinkrun

Topics
pslinkoptions

Introduced in R2012a

4 Functions, Properties, Classes, and Apps

4-16

pslinkrun
Run Polyspace analysis on model, system, or S-Function

Syntax
[polyspaceFolder, resultsFolder] = pslinkrun
[polyspaceFolder, resultsFolder]= pslinkrun(target)
[polyspaceFolder, resultsFolder] = pslinkrun(target,opts)
[polyspaceFolder, resultsFolder] = pslinkrun(target,opts,asModelRef)

Description
[polyspaceFolder, resultsFolder] = pslinkrun analyzes code generated from
the current system using the configuration options associated with the current system. It
returns the location of the results folder. The current system is the system returned by
the command bdroot.

[polyspaceFolder, resultsFolder]= pslinkrun(target) analyzes target with
the configuration options associated with the model containing target. Before you run
an analysis, you must:

• Generate code for models and subsystems.
• Compile S-Functions.

[polyspaceFolder, resultsFolder] = pslinkrun(target,opts) analyzes
target with the configuration options from the options object opts. It returns the
location of the results folder.

[polyspaceFolder, resultsFolder] = pslinkrun(target,opts,asModelRef)
uses asModelRef to specify which type of generated code to analyze—standalone code or
model reference code. This option is useful when you want to analyze only a referenced
model instead of an entire model hierarchy.

 pslinkrun

4-17

Examples

Analyze Generated Code

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

% Generate code from the model WhereAreTheErrors.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model);

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace using the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts);
bdclose(model);

The results and the corresponding Polyspace project are saved to the
results_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The
full path to the results folder is in the resultsFolder variable.

Analyze Referenced Model Code

Use a Simulink model to generate model reference code, set configuration options, and
then run an analysis from the command line.

% Generate code from the model WhereAreTheErrors.
% Treat WhereAreTheErrors as if referenced by another model.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model,'ModelReferenceRTWTargetOnly');

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

4 Functions, Properties, Classes, and Apps

4-18

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace with the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts,true);
bdclose(model);

The results and corresponding Polyspace project are saved to the
results_mr_WhereAreTheErrors folder, listed in the polyspaceFolder variable.
The full path to the results folder is in the resultsFolder variable.

Reuse Analysis Options for Multiple Models

This example shows how to reuse a subset of options for Polyspace analysis of multiple
models. Create a generic options object and specify properties that describe the common
options. Associate the generic options object with a model-specific options object.
Optionally, set some model-specific options and run the Polyspace analysis.

% Generate code from the model WhereAreTheErrors.
model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

% Create a generic options object to use for multiple model analyses.
opts = polyspace.ModelLinkOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

% Create a model-specific options object.
mlopts = pslinkoptions(model);

% Create a project from the generic options object.
% Associate the project with the model-specific options object.
prjfile = opts.generateProject('model_link_opts');
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

 pslinkrun

4-19

% Run Polyspace with the model-specific options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,mlopts);
bdclose(model);

After the analysis completes, results open automatically in the Polyspace interface.

Input Arguments
target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

Target of the analysis specified as a character vector, with the model, system, or S-
function in single quotes. The default value is the system returned by bdroot.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('demo') where
demo is the name of a model.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('path/to/
sfunction')
Data Types: char

opts — Configuration options
options associated with target (default) | options object

Configuration options for the analysis, specified as a Polyspace options object. The
function pslinkoptions creates an options object. You can customize the options object
by changing the pslinkoption properties.
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code that is generated as
standalone code. This option is equivalent to choosing Verify Code Generated For
> Model in the Simulink Polyspace options.

• If asModelRef is true, Polyspace analyzes code that is generated as model referenced
code. This option is equivalent to choosing Verify Code Generated For >

4 Functions, Properties, Classes, and Apps

4-20

Referenced Model in the Simulink Polyspace options. Specifying model reference
code indicates that Polyspace must look for the generated code in a different location
from the location for standalone code.

Data Types: logical

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace project and results, specified as a character
vector. The default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 9-18.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder
$ModelName$ with the analysis results. This variable gives you the full path to the
subfolder. You can use this path with the polyspace.BugFinderResults class.

To change the parent folder results_$ModelName$, see “Output folder” on page 9-18.

See Also
pslinkfun | pslinkoptions | pslinkoptions

Topics
“Verify S-Function Code”
“Recommended Model Settings for Code Analysis”

Introduced in R2012a

 pslinkrun

4-21

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinder
polyspaceBugFinder(projectFile)

polyspaceBugFinder(optsObject)
polyspaceBugFinder(projectFile, '-nodesktop')

polyspaceBugFinder(resultsFile)
polyspaceBugFinder('-results-dir',resultsFolder)

polyspaceBugFinder('-help')

polyspaceBugFinder('-sources',sourceFiles)
polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinder opens Polyspace Bug Finder.

polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

polyspaceBugFinder(optsObject) runs an analysis on the Polyspace options object
in MATLAB.

polyspaceBugFinder(projectFile, '-nodesktop') runs an analysis on the
Polyspace project file in MATLAB.

Alternatively, you can use the function polyspaceBugFinderNoDesktop with the
syntax polyspaceBugFinderNoDesktop(projectfile).

4 Functions, Properties, Classes, and Apps

4-22

polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more
Name,Value pair arguments.

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Bug_Finder_Example.psprj from
the folder matlabroot\polyspace\examples\cxx\Bug_Finder_Example.

Open the project Bug_Finder_Example.psprj in the Polyspace interface.

prjFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...
 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');
polyspaceBugFinder(prjFile);

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder matlabroot\polyspace\examples\cxx
\Bug_Finder_Example\Results.

Open the results of resFolder.

 polyspaceBugFinder

4-23

resFolder = fullfile(matlabroot, 'polyspace', 'examples', ...
 'cxx', 'Bug_Finder_Example', 'Results');
polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line.
For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {'C:\Polyspace_Sources\source.c'};
opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis and view the results.

polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',opts.ResultsDir)

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinder('-sources','C:\Polyspace_Sources\source.c', ...
 '-I','C:\Polyspace_Includes', ...
 '-results-dir','C:\Polyspace_Results')

4 Functions, Properties, Classes, and Apps

4-24

To view the results, enter:

polyspaceBugFinder('-results-dir','C:\')

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can
customize as many additional options as you want by changing properties in an options
object or by using Name-Value pairs. Here you specify checking of MISRA C 2012 coding
rules.

Create variables to save the source file path and results folder path. You can use these
variables for either analysis method.

sourceFileName = fullfile(matlabroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',resFolder1);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinder('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');
polyspaceBugFinder('-results-dir',resFolder2);

• “Run Polyspace Analysis by Using MATLAB Scripts”

Input Arguments
optsObject — Polyspace options object name
object handle

 polyspaceBugFinder

4-25

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes.
Example: opts

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.
Example: 'C:\Polyspace_Projects\myProject.psprj'
Data Types: char

resultsFile — Name of .psbf file
character vector

Name of results file with extension .psbf, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.
Example: 'myResults.psbf'
Data Types: char

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. If the results file resides in a subfolder of the specified folder,
this command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'
Data Types: char

sourceFiles — Comma-separated names of C or C++ files
character vector

4 Functions, Properties, Classes, and Apps

4-26

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative
path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code
is intended for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Analysis
Options”.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2013b

 polyspaceBugFinder

4-27

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure -option value buildCommand traces your build system and
uses -option value to modify the default operation of polyspaceConfigure. Specify
the modifiers before buildCommand, otherwise they are considered as options in the
build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

4 Functions, Properties, Classes, and Apps

4-28

polyspaceBugFinder('myProject.psprj')

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -no-project -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinder -options-file myOptions

• “Create Project Automatically”

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

 polyspaceConfigure

4-29

Option Argument Description
-allow-build-error None Option to create a Polyspace project even if an

error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-
zero exit status or error level that indicates
which error occurred in your build process.

-allow-overwrite None Option to overwrite a project with the same
name, if it exists.

By default, polyspaceConfigure throws an
error if a project with the same name already
exists in the output folder. Use this option to
overwrite the project.

-author Author name Name of project author.

Example: -author jsmith
-debug None Option used by MathWorks technical support
-help None Option to display the full list of

polyspaceConfigure commands

4 Functions, Properties, Classes, and Apps

4-30

Option Argument Description
-lang auto (default) | c

| cpp | cpp11
Option to specify source code language. The
languages are:

• C99: Use argument c.
• C++03: Use argument cpp.
• C++11: Use argument cpp11.

By default,polyspaceConfigure detects the
language.

The argument to this option maps to the
Source code language option in your
Polyspace project. See Source code
language (-lang).

-output-options-file None Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspaceBugFinder.

-output-project Path Project file name and location for saving
project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the
relative path ../myProjects/.

-prog Project name Project name that appears in the Polyspace
user interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

 polyspaceConfigure

4-31

Option Argument Description
-silent (default) | -
verbose

None Option to suppress or display additional
messages from running
polyspaceConfigure.

Advanced Options
Option Argument Description
-compiler-config Path and file

name
Location and name of compiler configuration
file.

The file must be in a specific format. For
guidance, see the existing configuration files in
matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspaceConfigure with the -no-project
option.

If you use this option, you do not need to specify
the buildCommand argument.

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of
polyspaceConfigure with the -no-build
option.

4 Functions, Properties, Classes, and Apps

4-32

Option Argument Description
-tmp-path Path Location of folder where temporary files are

stored.

Cache Control Options
Option Argument Description
-build-trace Path and file

name
Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-no-cache | -cache-
sources (default) | -cache-
all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-keep-cache | -no-keep-
cache (default)

None Option to preserve or clean up cache
information after polyspaceConfigure
completes execution.

If polyspaceConfigure fails, you can provide
this cache information to technical support for
debugging purposes.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache

See Also

Topics
“Create Project Automatically”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

 polyspaceConfigure

4-33

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-34

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Distributed Computing Server cluster

Syntax
polyspaceJobsManager('listjobs')
polyspaceJobsManager('cancel','-job',jobNumber)
polyspaceJobsManager('remove','-job',jobNumber)
polyspaceJobsManager('getlog','-job',jobNumber)
polyspaceJobsManager('wait','-job',jobNumber)
polyspaceJobsManager('promote','-job',jobNumber)
polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)
polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description
polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

 polyspaceJobsManager

4-35

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results
from the specified job. The results are downloaded to the folder you specified when
starting analysis, using the -results-dir on page 2-37 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example
uses the myMJS@myCompany.com scheduler. When you perform this example, replace
this scheduler with your own cluster name.

Set up your source files.

mkdir 'C:\psdemo\src'
demo = fullfile(matlabroot,'polyspace','examples','cxx',...
'Bug_Finder_Example','sources');
copyfile(demo,'C:\psdemo\src\')

Submit two jobs to your scheduler.

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com
 -sources C:\psdemo\src*.c'
 -results-dir 'C:\psdemo\res1'

4 Functions, Properties, Classes, and Apps

4-36

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com
 -sources 'C:\psdemo\src\numeric.c'
 -results-dir 'C:\psdemo\res2'
 -add-to-results-repository
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Download the information from job 20.

polyspaceJobsManager('download','-job','20','-results-folder', ...
 'C:\psdemo\res3','-scheduler','myCluster')

Input Arguments
jobNumber — Queued job number
character vector of job number

Number of the queued job that you want to manage, specified as a character vector in
single quotes.
Example: '-job','10'

 polyspaceJobsManager

4-37

resultsFolder — Path to results folder
character vector

Path to results folder specified as a character vector in single quotes. This folder stores
the downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

See Also
polyspaceBugFinder

Topics
“Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
“Run Remote Analysis at the Command Line” (Polyspace Code Prover)

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-38

polyspace-bug-finder-nodesktop
Run a Bug Finder analysis from the DOS or UNIX command line

Syntax
polyspace-bug-finder-nodesktop -sources sourceFiles
polyspace-bug-finder-nodesktop -sources sourceFiles -option value

polyspace-bug-finder-nodesktop -sources-list-file listOfSources
polyspace-bug-finder-nodesktop -sources-list-file listOfSources -
option value

polyspace-bug-finder-nodesktop -options-file optFile

polyspace-bug-finder-nodesktop -h[elp]

Description
polyspace-bug-finder-nodesktop -sources sourceFiles runs a Bug Finder
analysis on the source file or files sourceFiles. The analysis uses the default analysis
options.

polyspace-bug-finder-nodesktop -sources sourceFiles -option value
customizes the analysis of sourceFiles with the -option value pairs specified.

polyspace-bug-finder-nodesktop -sources-list-file listOfSources runs a
Bug Finder analysis on the source files listed in the text file listOfSources. The
analysis uses the default analysis options. Using a sources list file is recommended when
you have many source files. By keeping the list of sources in a text file, the command is
shorter and updates to the list are easier.

polyspace-bug-finder-nodesktop -sources-list-file listOfSources -
option value customizes the analysis of listOfSources using the -option value
pairs specified.

 polyspace-bug-finder-nodesktop

4-39

polyspace-bug-finder-nodesktop -options-file optFile runs a Bug Finder
analysis with the options specified in the option file. When you have many analysis
options, an options file makes it easier to run the same analysis again.

polyspace-bug-finder-nodesktop -h[elp] lists a summary of possible analysis
options.

Examples

Run Analysis by Directly Specifying Options

Run a local Bug Finder analysis by specifying analysis options in the command itself.
This example uses source files from the Polyspace Bug Finder example. To run this
example, replace matlabroot with the path to your MATLAB installation, for example
C:\Program Files\MATLAB\R2017a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012
mandatory rules, programming and numerical defects, and using GNU 4.7 compiler
settings. This example command is split by ^ characters for readability. In practice, you
can put all commands on one line.
matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop^
 -sources ^
matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.
matlabroot\polyspace\bin\polyspace-bug-finder C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Run Local Analysis with Options File

Run a local Bug Finder analysis by specifying analysis options in the command itself.
This example uses source files from the Polyspace Bug Finder example. To run this

4 Functions, Properties, Classes, and Apps

4-40

example, replace matlabroot with the path to your MATLAB installation, for example
C:\Program Files\MATLAB\R2017a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c
-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop -options-file myOptionsFile.txt

Open the results.

matlabroot\polyspace\bin\polyspace-bug-finder C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

• “Run Local Analysis from DOS or UNIX Command Line”
• “Run Remote Analysis at the Command Line”

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a
string. If the files are not in the current folder (pwd), sourceFiles must include a full or
relative path. For more information, see -sources.
Example: -sources myFile.c, -sources C:\mySources\myFile1.c,C:
\mySources\myFile2.c

 polyspace-bug-finder-nodesktop

4-41

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file
followed by the file. If the files are not in the current folder (pwd), listOfSources must
include a full or relative path. For more information, see -sources-list-file.

Example: -sources-list-file filename.txt, -sources-list-file "C:
\ps_analysis\source_files.txt"

-option value — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if
applicable value. For syntax specifications, see the individual analysis option reference
pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the
file. For more information, see -options-file.
Example: -options-file opts.txt, -options-file "C:\ps_analysis
\options.txt"

See Also
polyspaceBugFinder

Topics
“Run Local Analysis from DOS or UNIX Command Line”
“Run Remote Analysis at the Command Line”
“Analysis Options”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-42

Polyspace Bug Finder
Identify software defects via static analysis

Description
The Polyspace Bug Finder app uses static analysis to quickly find run-time errors,
data flow problems, and other defects in C and C++ code.

You can also add check compliance with MISRA C, MISRA C++, JSF++, and custom
coding rules.

Open the Polyspace Bug Finder App
• MATLAB Toolstrip: On the Apps tab, under Code Verification, click the app icon.
• MATLAB command prompt: Enter polyspaceBugFinder.

Examples
• “Find Defects from the Polyspace Environment”
• “Run Local Analysis from DOS or UNIX Command Line”

Programmatic Use

polyspaceBugFinder

See Also
Apps
Polyspace Code Prover

 Polyspace Bug Finder

4-43

Functions
polyspaceBugFinder | polyspaceConfigure

Topics
“Find Defects from the Polyspace Environment”
“Run Local Analysis from DOS or UNIX Command Line”
“Polyspace Bug Finder”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-44

polyspace.Project class
Package: polyspace

Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object.

• To specify source files and customize analysis options, use the Configuration
property.

• To run the analysis, use the run method.
• To read results after analysis, use the Results property.

Construction
proj = polyspace.Project creates an object that you can use to configure and run a
Polyspace analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object.
The object has properties corresponding to the analysis options. For more information on
those properties, see polyspace.Options.

You can retain the default options or change them in one of these ways:

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

 polyspace.Project class

4-45

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For
instance, you want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface (.psprj file).

proj = polyspace.Project;
projectLocation = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and
then import them to a polyspace.Project object. In the user interface, you can
access help from features such as the Compilation Assistant and get tooltip help on
options.

• Obtain the options from a Simulink model. Before obtaining the options, generate
code from the model.

modelName = 'sldemo_bounce';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelname, 'SystemTargetFile', 'ert.tlc');
set_param('sldemo_bounce','Solver','FixedStepAuto');
set_param('sldemo_bounce','SupportContinuousTime','on')

% Generate code
rtwbuild(modelName);

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

4 Functions, Properties, Classes, and Apps

4-46

Results of Polyspace analysis. When you create a polyspace.Project object, this
property is initially empty. The property is populated only after you execute the run
method of the object. Depending on the argument to the run method, 'bugFinder' or
'codeProver', the property is implemented as a polyspace.BugFinderResults or
polyspace.CodeProverResults object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getSummary('defects');

For more information, see polyspace.BugFinderResults.getSummary or
polyspace.CodeProverResults.getSummary.

• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getResults('readable');

For more information, see polyspace.BugFinderResults.getResults or
polyspace.CodeProverResults.getResults.

Methods

run Run a Polyspace analysis

 polyspace.Project class

4-47

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if the function does not exist in the

source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

4 Functions, Properties, Classes, and Apps

4-48

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
defectsSummary = proj.Results.getSummary('defects');
misraSummary = proj.Results.getSummary('misraC2012');

See Also

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Troubleshoot Polyspace Analysis from MATLAB”

 polyspace.Project class

4-49

Introduced in R2017b

4 Functions, Properties, Classes, and Apps

4-50

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the
Configuration property of a polyspace.Project object. Do not create a
polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source
files and customize analysis options, change the object properties.

To analyze model-generated code, use polyspace.ModelLinkOptions instead.

Construction
opts = polyspace.Options creates an object whose properties correspond to options
for running a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Projectpolyspace.Project
object. The object has a property Configuration, which is a polyspace.Options
object.

opts = polyspace.Options(lang) creates a Polyspace options object with options
that are applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object
from an existing Polyspace project projectFile. You set the options in your project in
the Polyspace user interface and create the options object from that project for
programmatically running the analysis.

 polyspace.Options class

4-51

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.
To identify the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Options.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

4 Functions, Properties, Classes, and Apps

4-52

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties. In case you do not have write access to your
current folder, a temporary folder is being used for storing analysis results.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver
instead of polyspaceBugFinder.

results = polyspaceBugFinder(opts);

Open the results in the Polyspace user interface.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug
Finder analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

 polyspace.Options class

4-53

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the
results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

• “Run Polyspace Analysis by Using MATLAB Scripts”
• “Generate MATLAB Scripts from Polyspace User Interface”

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkOptions
instead.

See Also
polyspace.ModelLinkOptions | polyspace.Project | polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-54

polyspace.ModelLinkOptions class
Package: polyspace

Create object for running Polyspace analysis on generated code

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source
files and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.Options instead.

Construction
opts = polyspace.ModelLinkOptions creates an object whose properties correspond
to options for running a Polyspace analysis on generated code.

opts = polyspace.ModelLinkOptions(lang) creates a Polyspace options object
with options that are applicable to the language lang.

opts = polyspace.ModelLinkOptions(model) creates a Polyspace options object
with options that are applicable to model. Prior to extracting options from the model, you
must load the model and generate code.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.

model — Model or subsystem name
character vector

 polyspace.ModelLinkOptions class

4-55

Name or path to model or subsystem, specified as a character vector.

Prior to extracting options from the model, you must:

1 Load the model. Use load_system or open_system.
2 Generate code from the model. Use rtwbuild.

Example: 'psdemo_model_link_sl'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS command-line name. For syntax details, see
polyspace.ModelLinkOptions.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on code generated from a
model.

Generate code from the model sldemo_bounce. Before code generation, set a system
target file appropriate for code analysis. See also “Recommended Model Settings for Code
Analysis”.

modelName = 'sldemo_bounce';
load_system(modelName);

4 Functions, Properties, Classes, and Apps

4-56

% Set parameters for Embedded Coder target
set_param(modelname, 'SystemTargetFile', 'ert.tlc');
set_param('sldemo_bounce','Solver','FixedStepAuto');
set_param('sldemo_bounce','SupportContinuousTime','on')

if exist(fullfile(pwd,'sldemo_bounce_ert_rtw'), 'dir') == 0
 rtwbuild(modelName);
end

Associate a polyspace.ModelLinkOptions object with the model. A subset of the
object properties are set from the configuration parameters associated with the model.
The other properties take their default values. For details on the configuration
parameters, see “Configure Model Options”.

opts = polyspace.ModelLinkOptions(modelName);

Change the property values if needed. For instance, you can specify that the analysis
must check for all MISRA C: 2012 violations and generate a PDF report of the results.
You can also specify a folder for the analysis results.

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.MergedReporting.EnableReportGeneration = true;
opts.MergedReporting.ReportOutputFormat = 'PDF';

opts.ResultsDir = 'newResfolder';

Create a polyspace.Projectpolyspace.Project object. Associate the
Configuration property of this object to the options that you previously specified.

proj = polyspace.Project;
proj.Configuration = opts;

Run analysis and open results.

cpStatus = proj.run('codeProver');
proj.Results.getResults('readable');

• “Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkOptions class

4-57

Alternatives
If you are analyzing handwritten code, use a polyspace.Project object directly.
Alternatively, use a polyspace.Options object.

See Also
polyspace.Options | polyspace.Project | polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-58

polyspace.BugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for handwritten code

Note This class is deprecated and will be removed in a future release. Use
polyspace.Options instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

If you are analyzing model-generated code, use
polyspace.ModelLinkBugFinderOptions instead.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object with
available options.

opts = polyspace.BugFinderOptions(lang) creates a Bug Finder options object
with options that are applicable for the language lang.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines which properties the object has.

 polyspace.BugFinderOptions class

4-59

Properties
The object properties are the analysis options for Polyspace Bug Finder projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Options.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(optsBF);
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

4 Functions, Properties, Classes, and Apps

4-60

Run Polyspace by Generating a Project File

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = generateProject(optsBF, optsBF.Prog);
polyspaceBugFinder(psprj);

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

• “Run Polyspace Analysis by Using MATLAB Scripts”

Alternatives
If you are analyzing code generated from a model, use
polyspace.ModelLinkBugFinderOptions instead.

See Also
polyspace.ModelLinkBugFinderOptions | polyspace.Options |
polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.BugFinderOptions class

4-61

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-62

polyspace.ModelLinkBugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for generated code

Note This class is deprecated and will be removed in a future release. Use
polyspace.ModelLinkOptions instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.BugFinderOptions instead.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object for
generated code with available options for C/C++ generated code.

Properties
The object properties are the analysis options for Polyspace Bug Finder model link
projects. The properties are organized in the same categories as the Polyspace interface.
The property names are a shortened version of the DOS command-line name. For syntax
details, see polyspace.ModelLinkOptions.

 polyspace.ModelLinkBugFinderOptions class

4-63

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on model generated code with
MATLAB functions and objects.

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF
report.

opts = polyspace.ModelLinkBugFinderOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');
mlopts = pslinkoptions(model);
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

Run analysis.

4 Functions, Properties, Classes, and Apps

4-64

[polyspaceFolder, resultsFolder] = pslinkrun(model);

• “Run Polyspace Analysis by Using MATLAB Scripts”

Alternatives
If you are analyzing handwritten code, use polyspace.BugFinderOptions instead.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkOptions |
polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkBugFinderOptions class

4-65

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check. This object is useful if you want to check only a
custom subset of the Bug Finder defects. To use your custom list of defects in an analysis,
you must add it to a polyspace.BugFinderOptions or
polyspace.ModelLinkBugFinderOptions object. In your Bug Finder options object,
set the following properties:

• Add your defect options object to the BugFinderAnalysis.CheckersList property.
• Change the BugFinderAnalysis.CheckersPreset property to 'custom'.

Construction
defectList = polyspace.DefectsOptions creates the defect options object
defectList. You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their
command-line name, found on the individual defect reference pages.

By default, all defects are off. To turn on a defect, set the defect to true. For example:

defectList.FLOAT_ZERO_DIV = true

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

4 Functions, Properties, Classes, and Apps

4-66

Examples

Customize List of Defects to Check

Use a polyspace.DefectsOptions object to customize the list of defects checked during a
Polyspace Bug Finder analysis.

Create options objects.

defects = polyspace.DefectsOptions;
opts = polyspace.Options;

Set Bug Finder object properties to analyze with the customized defect list.

opts.BugFinderAnalysis.CheckersList = defects;
opts.BugFinderAnalysis.CheckersPreset = 'custom';

Activate the numerical defects.

defects.FLOAT_ZERO_DIV = true;
defects.INT_ZERO_DIV = true;
defects.FLOAT_ABSORPTION = true;
defects.BITWISE_NEG = true;
defects.FLOAT_CONV_OVFL = true;
defects.FLOAT_OVFL = true;
defects.INT_CONV_OVFL = true;
defects.INT_OVFL = true;
defects.FLOAT_STD_LIB = true;
defects.INT_STD_LIB = true;
defects.SHIFT_NEG = true;
defects.SHIFT_OVFL = true;
defects.SIGN_CHANGE = true;
defects.UINT_CONV_OVFL = true;
defects.UINT_OVFL = true;
defects.BAD_PLAIN_CHAR_USE = true;

See Also
polyspace.BugFinderOptions | polyspace.CodingRulesOptions |
polyspace.ModelLinkBugFinderOptions

 polyspace.DefectsOptions class

4-67

Topics
“Defects”

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-68

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
If your target processor does not match one of the preset targets on page 1-11, use this
object to create a custom generic target. To use your custom target in an analysis, you
must add it to a polyspace.BugFinderOptions or
polyspace.ModelLinkBugFinderOptions object. In your options object, add your
generic target options object to the TargetCompiler.Target property.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that
you can customize. To specify the size and alignment of types, change the properties of
the genericTarget object.

Properties
For more details about any of these properties, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with
the DOS/UNIX command-line option -align.
Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

 polyspace.GenericTargetOptions class

4-69

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/
UNIX command-line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/
UNIX command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

Endianess — Endianess of target architecture
little (default) | big

Endianess of target architecture, specified as little or big. Comparable with the DOS/
UNIX command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/
UNIX command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the
DOS/UNIX command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX
command-line option -long-is-32bits.
Example: target.LongNumBits = 32

4 Functions, Properties, Classes, and Apps

4-70

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the
DOS/UNIX command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/
UNIX command-line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/
UNIX command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize Generic Target Settings

Use a polyspace.GenericTargetOptions object to customize a generic target for your
analysis.

Create options objects.

target = polyspace.GenericTargetOptions;
opts = polyspace.Options;

 polyspace.GenericTargetOptions class

4-71

Add the custom target to the Bug Finder options object.

opts.TargetCompiler.Target = target;

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

See Also
Target processor type (-target) | polyspace.BugFinderOptions |
polyspace.ModelLinkBugFinderOptions

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-72

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check for one of the supported standard coding rule
sets. To use your custom target in an analysis, you must add it to a
polyspace.Options or polyspace.ModelLinkOptions object. In your options object:

• Add your coding rules options object to one of the
CodingRulesCodeMetrics.RULESETSubset properties.

• Activate your coding rule set with one of the
CodingRulesCodeMetrics.EnableRULESET properties.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules
object ruleList for the RuleSet coding rule set. Set the active rules in the coding rules
object.

Input Arguments

RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

 polyspace.CodingRulesOptions class

4-73

Properties
For each coding rule set, an object is created with all supported rules for that rule set. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

ruleList.rule_20_1 = false

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked during your analysis by using a coding rules
options object.

Create options objects.

misraRules = polyspace.CodingRulesOptions('misraC2012');
opts = polyspace.Options;

Add the customized list of coding rules to the Bug Finder options object and activate
them.

opts.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.rule_2_1 = false;
misraRules.rule_2_2 = false;
misraRules.rule_2_3 = false;
misraRules.rule_2_4 = false;
misraRules.rule_2_5 = false;

4 Functions, Properties, Classes, and Apps

4-74

misraRules.rule_2_6 = false;
misraRules.rule_2_7 = false;

• “Select Specific MISRA or JSF Coding Rules”

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Topics
“Select Specific MISRA or JSF Coding Rules”

Introduced in R2016b

 polyspace.CodingRulesOptions class

4-75

polyspace.BugFinderResults class
Package: polyspace

Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object.

You can obtain a high-level overview or read each individual result, for example, each
instance of a defect.

Construction
resObj = polyspace.BugFinderResults(resultsFolder) creates an object for
reading a specific set of Bug Finder results into MATLAB tables. Use the object methods
to read the results.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Results. If you run a Bug Finder analysis, this property is a
polyspace.BugFinderResults object.

Input Arguments

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. Even if the results file resides in a subfolder of the specified
folder, it cannot be accessed.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'

4 Functions, Properties, Classes, and Apps

4-76

Methods
getSummary View number of defects organized by defect type
getResults Read Bug Finder results into MATLAB table

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};

 polyspace.BugFinderResults class

4-77

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

Alternatives
To read Code Prover results from MATLAB, use the class
polyspace.CodeProverResults.

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-78

pslinkoptions Properties
Properties for the pslinkoptions object

Description
You can create a pslinkoptions object to customize your analysis at the command-line.
Use these properties to specify configuration options, where and how to store results,
additional files to include, and data range modes.

Properties
Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation

and rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

 pslinkoptions Properties

4-79

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = 'BugFinder';

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.
Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .prprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration
file during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';
Results

ResultDir — Results folder name and location
'{'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

4 Functions, Properties, Classes, and Apps

4-80

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be either
an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new result. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as
true or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

 pslinkoptions Properties

4-81

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.
Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};
Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.
Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or
'DesignMinMax' to apply assertions to outputs using a range defined in blocks and
workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

4 Functions, Properties, Classes, and Apps

4-82

Depth of verification specified by the model reference level to which you want to analyze.

Only for Embedded Coder

Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder

Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable

MISRA C++ rule checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule

checking, and run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder

Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

 pslinkoptions Properties

4-83

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

Only for TargetLink

Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

4 Functions, Properties, Classes, and Apps

4-84

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see OtherOther.

 polyspace.Project.Configuration Properties

4-85

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after which
Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

4 Functions, Properties, Classes, and Apps

4-86

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange Tester
must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10
BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
name of defects options object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

 polyspace.Project.Configuration Properties

4-87

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one the preset options: default,
all, or custom. To use custom, specify a CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false
ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

4 Functions, Properties, Classes, and Apps

4-88

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckSubnormal — Detect operations that result in subnormal floating point values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

 polyspace.Project.Configuration Properties

4-89

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and
pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

IgnoreConstantOverflows — Allow overflow in computations involving constants
false (default) | true

This property affects Code Prover analysis only.

Allow overflow in computations involving constants, specified as true or false.

For more information, see Ignore overflowing computations on constants (-
ignore-constant-overflows).
Example: opts.ChecksAssumption.IgnoreConstantOverflows = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

4 Functions, Properties, Classes, and Apps

4-90

ScalarOverflowsBehavior — Behavior of scalar overflows
wrap-around (default) | truncate-on-error

This property affects Code Prover analysis only.

Behavior of scalar overflows, specified as wrap-around or truncate-on-error.

For more information, see Overflow computation mode (-scalar-overflows-
behavior).
Example: opts.ChecksAssumption.ScalarOverflowsBehavior = 'truncate-on-
error'

ScalarOverflowsChecks — Check for integer overflows on signed and unsigned
variables
signed (default) | signed-and-unsigned | none

This property affects Code Prover analysis only.

Check for integer overflows on signed and unsigned variables, specified as signed,
signed-and-unsigned, or none.

For more information, see Detect overflows (-scalar-overflows-checks).
Example: opts.ChecksAssumption.ScalarOverflowsChecks = 'signed-and-
unsigned'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true
or false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
none (default) | never-called | called-from-unreachable | all

 polyspace.Project.Configuration Properties

4-91

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-
point function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'
CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
all (default) | none | cell array of class names

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or a cell array of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

ClassAnalyzerCalls — Class methods that you want to verify
unused (default) | all | all-public | inherited-all | inherited-all-public |
unused-public | inherited-unused | inherited-unused-public | cell array of
class methods

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or a cell
array of class methods that you want to verify.

For more information, see Functions to call within the specified classes
(-class-analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-
public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-92

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this
property to false, the analysis generates a main function, if it is not present in the source
files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to call
ahead of other functions
cell array of function names

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as
a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
_tmain (default) | wmain | _tWinMain | wWinMain | WinMain | DllMain

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main
extensions.

For more information, see Main entry point (-main).

 polyspace.Project.Configuration Properties

4-93

Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after the
initialization functions
unused (default) | none | all | cell array of function names

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions,
specified as unused, all, none, or a cell array of function names.

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

MainGeneratorWriteVariables — Global variables that you want the generated main to
initialize
uninit (C++ default) | public (C default) | none | all | cell array of global variable
names

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the
predefined sets or a cell array of global variable names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables =
'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class members
false (default) | true

4 Functions, Properties, Classes, and Apps

4-94

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-
constructors-init-check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

UnitByUnitCommonSource — Files that you want to include with each source file during a
file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification,
specified as a cell array of file paths.

For more information, see Common source files (-unit-by-unit-common-
source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2
| coding rules object | file

Subset of MISRA AC AGC rules to check, specified by:

 polyspace.Project.Configuration Properties

4-95

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• MISRA AC AGC coding rules object created with
polyspace.CodingRulesOptions('misraAcAgc').

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C+
+ 16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}
Data Types: cell

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}
Data Types: cell

CodeMetrics — Activate code metric calculations
false (default) | true

4 Functions, Properties, Classes, and Apps

4-96

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
custom coding rules file

Custom naming conventions to check against, specified as a custom coding rules file. You
can create the custom coding rules file manually or in the Polyspace interface.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.CustomRulesSubset = 'C:
\ps_settings\coding_rules\custom_rules.txt'
Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. Use with CustomRulesSubset.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableJsf — Check JSF C++ rules
false (default) | true

 polyspace.Project.Configuration Properties

4-97

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules | coding rules object | file

Subset of JSF C++ rules to check, specified by:

4 Functions, Properties, Classes, and Apps

4-98

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• JSF C++ coding rules object created with
polyspace.CodingRulesOptions('jsf').

• Full path to a file containing your JSF C++ subset. You can create this file manually
or from the Polyspace interface. See “Select Specific MISRA or JSF Coding Rules”.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | all | SQO-subset1 | SQO-subset2 |
coding rules object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• MISRA C:2012 coding rules object created with
polyspace.CodingRulesOptions('misraC2012').

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'

 polyspace.Project.Configuration Properties

4-99

Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• MISRA C:2004 coding rules object created with
polyspace.CodingRulesOptions('misraC').

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• MISRA C++ coding rules object created with
polyspace.CodingRulesOptions('misraCpp').

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

4 Functions, Properties, Classes, and Apps

4-100

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:
\includes**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:
\project1\common\includes'};
Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

 polyspace.Project.Configuration Properties

4-101

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
''pwd'/replace_keyword.pl'
Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:
\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return
values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the
constraint file, see “Specify External Constraints”.

4 Functions, Properties, Classes, and Apps

4-102

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | cell array of files or folders

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:
\project\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | character array

Files on which you do not want analysis results, specified by source-headers, all-
headers, or a character array beginning with custom= and containing a comma-
separated file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see .
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

 polyspace.Project.Configuration Properties

4-103

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

4 Functions, Properties, Classes, and Apps

4-104

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace Metrics
web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a
metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-105

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a
metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

4 Functions, Properties, Classes, and Apps

4-106

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;
MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
BugFinderSummary (default) | BugFinder | BugFinder_CWE | CodeMetrics |
Metrics

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
Developer (default) | CallHierarchy | CodeMetrics | CodingRules | Developer
| DeveloperReview | Developer_withGreenChecks | Quality |

 polyspace.Project.Configuration Properties

4-107

SoftwareQualityObjectives | SoftwareQualityObjectives_Summary |
VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'
Multitasking

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

4 Functions, Properties, Classes, and Apps

4-108

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EnableOsekMultitasking — Enable automatic multitasking configuration for OSEK
project
false (default) | true

Enable multitasking configuration of your OSEK project from the OIL files you provide.
Activate this option to enable Multitasking.OsekMultitasking.

For more information, see OSEK multitasking configuration (-osek-
multitasking)
Example: opts.Multitasking.EnableOsekMultitasking = 1

 polyspace.Project.Configuration Properties

4-109

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Entry points (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

4 Functions, Properties, Classes, and Apps

4-110

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
auto | cell array of files

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify MultitaskingEnableOsekMultitasking.

For more information, see OSEK multitasking configuration (-osek-
multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom='file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions
separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

 polyspace.Project.Configuration Properties

4-111

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
none (default) | auto | cell array of function names

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or a cell array of function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

4 Functions, Properties, Classes, and Apps

4-112

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase
verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'
Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-113

Functions on which separate results must be generated for each function call, specified
as a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | clang3.5 | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | iar
| iso | keil | visual9.0 | visual10 | visual11.0 | visual12.0 | visual14.0

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

Cpp11Extension — Allow C++11 language extensions
false (default) | true

Allow C++11 language extensions, specified as true or false.

For more information, see C++11 extensions (-cpp11-extension).
Example: opts.TargetCompiler.Cpp11Extension = true

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

4 Functions, Properties, Classes, and Apps

4-114

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).

 polyspace.Project.Configuration Properties

4-115

Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoLanguageExtensions — Restrict analysis to C language specified in ANSI C standard
false (default) | true

Restrict analysis to the C language that is specified in the ANSI C standard, specified as
true or false. For more information, see Respect C90 standard (-no-language-
extensions).
Example: opts.TargetCompiler.NoLanguageExtensions = true

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
8 (default) | 1 | 2 | 4 | 16

Default structure packing alignment, specified as 1,2, 4, 8, or 16. This property is
available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as unsigned-int, unsigned-long or unsigned-
long-long. See Management of size_t (-size-t-type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int
| unsigned-int | signed-long | unsigned-long

4 Functions, Properties, Classes, and Apps

4-116

Underlying type of wchar_t, specified as signed-short, unsigned-short, signed-
int, unsigned-int, signed-long or unsigned-long. See Management of wchar_t
(-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

Target — Target processor
i386 (default) | sparc | m68k | powerpc | powerpc64 | c-167 | tms320c3x |
sharc21x61 | necv580 | hc08 | hc12 | mpc5xx | c18 | x86_64 | generic target
object

Set size of data types and endienness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields
can have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point
in code.

 polyspace.Project.Configuration Properties

4-117

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL
unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

4 Functions, Properties, Classes, and Apps

4-118

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true
Other Properties

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.

 polyspace.Project.Configuration Properties

4-119

Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also

Topics
“Analysis Options”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-120

polyspace.ModelLinkOptions Properties
Customize Polyspace analysis of generated code with options object properties

Description
To customize your Polyspace analysis of generated code, modify the
polyspace.ModelLinkOptions object properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis options reference pages.
• How to create and use the object, see polyspace.ModelLinkOptions.

The same properties are also available with the deprecated classes
polyspace.ModelLinkBugFinderOptions and
polyspace.ModelLinkCodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

 polyspace.ModelLinkOptions Properties

4-121

For more information, see OtherOther.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after which
Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

4 Functions, Properties, Classes, and Apps

4-122

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange Tester
must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10
BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
name of defects options object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

 polyspace.ModelLinkOptions Properties

4-123

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one the preset options: default,
all, or custom. To use custom, specify a CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false
ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

4 Functions, Properties, Classes, and Apps

4-124

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckSubnormal — Detect operations that result in subnormal floating point values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

 polyspace.ModelLinkOptions Properties

4-125

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and
pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

IgnoreConstantOverflows — Allow overflow in computations involving constants
false (default) | true

This property affects Code Prover analysis only.

Allow overflow in computations involving constants, specified as true or false.

For more information, see Ignore overflowing computations on constants (-
ignore-constant-overflows).
Example: opts.ChecksAssumption.IgnoreConstantOverflows = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

4 Functions, Properties, Classes, and Apps

4-126

ScalarOverflowsBehavior — Behavior of scalar overflows
wrap-around (default) | truncate-on-error

This property affects Code Prover analysis only.

Behavior of scalar overflows, specified as wrap-around or truncate-on-error.

For more information, see Overflow computation mode (-scalar-overflows-
behavior).
Example: opts.ChecksAssumption.ScalarOverflowsBehavior = 'truncate-on-
error'

ScalarOverflowsChecks — Check for integer overflows on signed and unsigned
variables
signed (default) | signed-and-unsigned | none

This property affects Code Prover analysis only.

Check for integer overflows on signed and unsigned variables, specified as signed,
signed-and-unsigned, or none.

For more information, see Detect overflows (-scalar-overflows-checks).
Example: opts.ChecksAssumption.ScalarOverflowsChecks = 'signed-and-
unsigned'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true
or false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
none (default) | never-called | called-from-unreachable | all

 polyspace.ModelLinkOptions Properties

4-127

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-
point function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'
CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
all (default) | none | cell array of class names

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or a cell array of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

FunctionsCalledAfterLoop — Functions that the generated main must call after the
cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call after the cyclic code loop, specified as a cell
array of function names.

For more information, see Termination functions (-functions-called-after-
loop).
Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call before the
cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-128

Model Link only. Functions that the generated main must call before the cyclic code loop,
specified as a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-loop)).
Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

FunctionsCalledInLoop — Functions that the generated main must call in the cyclic
code loop
none (default) | all | cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call in the cyclic code loop, specified as none,
all, or a cell array of function names.

For more information, see Step functions (-functions-called-in-loop).
Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property affects Code Prover analysis only.

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must initialize
before the cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize before the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Parameters (-variables-written-before-loop).

 polyspace.ModelLinkOptions Properties

4-129

Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop =
'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in the
cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize in the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Inputs (-variables-written-in-loop).
Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2
| coding rules object | file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• MISRA AC AGC coding rules object created with
polyspace.CodingRulesOptions('misraAcAgc').

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C+
+ 16-6-1 must not be applied
cell array of character vectors

4 Functions, Properties, Classes, and Apps

4-130

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}
Data Types: cell

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}
Data Types: cell

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
custom coding rules file

Custom naming conventions to check against, specified as a custom coding rules file. You
can create the custom coding rules file manually or in the Polyspace interface.

For more information, see Check custom rules (-custom-rules).

 polyspace.ModelLinkOptions Properties

4-131

Example: opts.CodingRulesCodeMetrics.CustomRulesSubset = 'C:
\ps_settings\coding_rules\custom_rules.txt'
Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. Use with CustomRulesSubset.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

4 Functions, Properties, Classes, and Apps

4-132

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules | coding rules object | file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• JSF C++ coding rules object created with
polyspace.CodingRulesOptions('jsf').

• Full path to a file containing your JSF C++ subset. You can create this file manually
or from the Polyspace interface. See “Select Specific MISRA or JSF Coding Rules”.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

 polyspace.ModelLinkOptions Properties

4-133

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | all | SQO-subset1 | SQO-subset2 |
coding rules object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• MISRA C:2012 coding rules object created with
polyspace.CodingRulesOptions('misraC2012').

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• MISRA C:2004 coding rules object created with
polyspace.CodingRulesOptions('misraC').

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Select Specific MISRA or
JSF Coding Rules”.

4 Functions, Properties, Classes, and Apps

4-134

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | coding
rules object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• MISRA C++ coding rules object created with
polyspace.CodingRulesOptions('misraCpp').

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See “Select Specific MISRA or JSF Coding
Rules”.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

 polyspace.ModelLinkOptions Properties

4-135

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:
\includes**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:
\project1\common\includes'};
Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).

4 Functions, Properties, Classes, and Apps

4-136

Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
''pwd'/replace_keyword.pl'
Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:
\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return
values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the
constraint file, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | cell array of files or folders

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).

 polyspace.ModelLinkOptions Properties

4-137

Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:
\project\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | character array

Files on which you do not want analysis results, specified by source-headers, all-
headers, or a character array beginning with custom= and containing a comma-
separated file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see .
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

4 Functions, Properties, Classes, and Apps

4-138

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true
Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).

 polyspace.ModelLinkOptions Properties

4-139

Example: opts.Macros.DefinedMacros = {'name1','name2'}
MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace Metrics
web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a
metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a
metrics server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

4 Functions, Properties, Classes, and Apps

4-140

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

 polyspace.ModelLinkOptions Properties

4-141

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
BugFinderSummary (default) | BugFinder | BugFinder_CWE | CodeMetrics |
Metrics

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
Developer (default) | CallHierarchy | CodeMetrics | CodingRules | Developer
| DeveloperReview | Developer_withGreenChecks | Quality |
SoftwareQualityObjectives | SoftwareQualityObjectives_Summary |
VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

4 Functions, Properties, Classes, and Apps

4-142

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

 polyspace.ModelLinkOptions Properties

4-143

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EnableOsekMultitasking — Enable automatic multitasking configuration for OSEK
project
false (default) | true

Enable multitasking configuration of your OSEK project from the OIL files you provide.
Activate this option to enable Multitasking.OsekMultitasking.

For more information, see OSEK multitasking configuration (-osek-
multitasking)
Example: opts.Multitasking.EnableOsekMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Entry points (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

4 Functions, Properties, Classes, and Apps

4-144

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
auto | cell array of files

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

 polyspace.ModelLinkOptions Properties

4-145

To activate this option, specify MultitaskingEnableOsekMultitasking.

For more information, see OSEK multitasking configuration (-osek-
multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom='file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions
separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
none (default) | auto | cell array of function names

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or a cell array of function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-146

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase
verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

 polyspace.ModelLinkOptions Properties

4-147

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified
as a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

4 Functions, Properties, Classes, and Apps

4-148

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | clang3.5 | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | iar
| iso | keil | visual9.0 | visual10 | visual11.0 | visual12.0 | visual14.0

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

Cpp11Extension — Allow C++11 language extensions
false (default) | true

Allow C++11 language extensions, specified as true or false.

For more information, see C++11 extensions (-cpp11-extension).
Example: opts.TargetCompiler.Cpp11Extension = true

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

 polyspace.ModelLinkOptions Properties

4-149

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoLanguageExtensions — Restrict analysis to C language specified in ANSI C standard
false (default) | true

Restrict analysis to the C language that is specified in the ANSI C standard, specified as
true or false. For more information, see Respect C90 standard (-no-language-
extensions).
Example: opts.TargetCompiler.NoLanguageExtensions = true

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
8 (default) | 1 | 2 | 4 | 16

4 Functions, Properties, Classes, and Apps

4-150

Default structure packing alignment, specified as 1,2, 4, 8, or 16. This property is
available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as unsigned-int, unsigned-long or unsigned-
long-long. See Management of size_t (-size-t-type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int
| unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as signed-short, unsigned-short, signed-
int, unsigned-int, signed-long or unsigned-long. See Management of wchar_t
(-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

Target — Target processor
i386 (default) | sparc | m68k | powerpc | powerpc64 | c-167 | tms320c3x |
sharc21x61 | necv580 | hc08 | hc12 | mpc5xx | c18 | x86_64 | generic target
object

Set size of data types and endienness of processor, specified as one of the predefined
target processors or a generic target object.

 polyspace.ModelLinkOptions Properties

4-151

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'
VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields
can have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point
in code.

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL
unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-152

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true
Other Properties

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

 polyspace.ModelLinkOptions Properties

4-153

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also

Topics
“Analysis Options”

4 Functions, Properties, Classes, and Apps

4-154

Introduced in R2017a

 polyspace.ModelLinkOptions Properties

4-155

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo. The
options objects do not need to be the same type of options object. This method copies only
properties that are common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options
or polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

4 Functions, Properties, Classes, and Apps

4-156

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that
object to another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'diab';

Create another object and use copyTo to copy over options from the previous object.

opts2 = polyspace.Options();
copyTo(opts1, opts2);

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.generateProject

Introduced in R2016b

 copyTo

4-157

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called projectName
from the options specified in the polyspace.Options object opts.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object to convert into a psprj file specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of
the psprj file.
Example: 'myProject'

4 Functions, Properties, Classes, and Apps

4-158

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from
an options object.

Create a Bug Finder object and set properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce
identical analysis results. The only difference is that the psprj project can be rerun in
the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

 generateProject

4-159

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.copyTo

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-160

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of
a polyspace.Options object to a MATLAB script. The script shows the values assigned
to all the properties of the object. You can run the script later to define the object in the
MATLAB workspace and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
Character vector

Name or path to script, specified as a character vector. If you specify a relative path, the
script is created in subfolder of the current working folder.
Example: 'runPolyspace.m'

 toScript

4-161

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or
'append'. If you specify 'append', the object properties are added to the end of an
existing script. Otherwise, a new script is created.

Output Arguments
filePath — Full path to script
Character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.generateProject

Topics
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017b

4 Functions, Properties, Classes, and Apps

4-162

run
Class: polyspace.Project
Package: polyspace

Run a Polyspace analysis

Syntax
proj.run(product)

Description
status = proj.run(product) runs a Polyspace Bug Finder or Polyspace Code Prover
analysis using the configuration specified in the polyspace.Project object proj. The
analysis results are also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project
object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

 run

4-163

Status of analysis. If the analysis fails, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a true status.

There can be many other reasons why the analysis fails. If the analysis fails, in your
results folder, check the log file. You can see the results folder using the Configuration
property of the polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

4 Functions, Properties, Classes, and Apps

4-164

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

 run

4-165

getSummary
Class: polyspace.BugFinderResults
Package: polyspace

View number of defects organized by defect type

Syntax
resObj.getSummary(resultsType)

Description
resSummary = resObj.getSummary(resultsType) returns the distribution of results
of type resultsType in a Bug Finder result set denoted by the
polyspace.BugFinderResults object resObj. For instance, if you choose to see
defects, you can see how many defects of each type are present in the result set, for
instance, how many non-initialized variables or declaration mismatches.

Input Arguments
resultsType — Type of Bug Finder analysis result
'defects' (default) | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' |
'jsf' | 'metrics' | 'customRules'

Type of result, specified as a character vector.
Entry Meaning
'defects' Bugs or defects. See “Defects”.
'misraC' MISRA C:2004 rules. See “MISRA C:2004

and MISRA AC AGC Rules”.
'misraCAGC' MISRA C:2004 rules for generated code.

See “MISRA C:2004 and MISRA AC AGC
Rules”.

4 Functions, Properties, Classes, and Apps

4-166

Entry Meaning
'misraCPP' MISRA C++ rules. See “MISRA C++:2008

Rules”.
'misraC2012' MISRA C:2012 rules. See “MISRA C:2012

Directives and Rules”.
'jsf' JSF C++ rules. See “JSF C++ Rules”.
'metrics' Code complexity metrics. See “Code

Metrics”.
'customRules' Custom rules enforcing naming

conventions for identifiers. See “Custom
Coding Rules”.

Output Arguments
resSummary — Distribution of defects by defect type
table

Distribution of defects by defect type, specified as a table. For instance, an extract of the
table looks like this:
Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two
non-initialized variables.

For more information on MATLAB tables, see “Tables” (MATLAB).

Examples
Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

 getSummary

4-167

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary('defects');
resTable = resObj.getResults();

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See Also
polyspace.BugFinderResults

4 Functions, Properties, Classes, and Apps

4-168

Topics
“Defects”
“Bug Finder Defect Groups”
“Classification of Defects by Impact”

Introduced in R2017a

 getSummary

4-169

getResults
Class: polyspace.BugFinderResults
Package: polyspace

Read Bug Finder results into MATLAB table

Syntax
getResults(content)

Description
resTable = getResults(content) returns a table showing all results in a Bug Finder
result set denoted by the polyspace.BugFinderResults object resObj. You can
manipulate the table to produce graphs and statistics about your results that you cannot
obtain readily from the user interface.

Input Arguments
content — Result information to include
'full' (default) | 'readable'

Amount of information to be included for each result. If you specify 'full', all
information is included. See “Export Polyspace Analysis Results”. If you specify
'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups, MISRA C:2012 groups, etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

4 Functions, Properties, Classes, and Apps

4-170

Output Arguments
resTable — Results of a Bug Finder analysis
table

Table showing all results from a single Bug Finder analysis. For each result, the table
has information such as file, family, and so on. If a particular information is not available
for a result, the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Polyspace Analysis Results”.
• MATLAB tables, see “Tables” (MATLAB).

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

 getResults

4-171

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

See Also
polyspace.BugFinderResults

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-172

MISRA C 2012

5

MISRA C:2012 Dir 1.1
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood

Description

Directive Definition
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood.

Rationale
A code construct has implementation-defined behavior if the C standard allows compilers
to choose their own specifications for the construct. The full list of implementation-
defined behavior is available in Annex J.3 of the standard ISO/IEC 9899:1999 (C99) and
in Annex G.3 of the standard ISO/IEC 9899:1990 (C90).

If you understand and document all implementation-defined behavior, you can be
assured that all output of your program is intentional and not produced by chance.

Polyspace Specification
The analysis detects the following possibilities of implementation-defined behavior in
C99 and their counterparts in C90. If you know the behavior of your compiler
implementation, justify the analysis result with appropriate comments. To justify a
result, assign one of these statuses: Justified, No action planned, or Not a
defect.

Tip To mass-justify all results that indicate the same implementation-defined behavior,
use the Detail column on the Results List pane. Click the column header so that all
results with the same entry are grouped together. Select the first result and then select
the last result while holding the Shift key. Assign a status to one of the results. If you
do not see the Detail column, right-click any other column header and enable this
column.

5 MISRA C 2012

5-2

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2:
Environment

An alternative
manner in which
main function
may be defined.

The analysis flags main with arguments and return
types other than:

int main(void) { ... }

or

int main(int argc, char *argv[]) { ... }

See section 5.1.2.2.1 of the C99 Standard.
J.3.2:
Environment

The set of
environment
names and the
method for
altering the
environment list
used by the
getenv function.

The analysis flags uses of the getenv function. For
this function, you need to know the list of
environment variables and how the list is modified.

See section 7.20.4.5 of the C99 Standard.

J.3.6: Floating
Point

The rounding
behaviors
characterized by
non-standard
values of
FLT_ROUNDS.

The analysis flags the include of float.h if values
of FLT_ROUNDS are outside the set, {-1, 0, 1, 2, 3}.
Only the values in this set lead to well-defined
rounding behavior.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The evaluation
methods
characterized by
non-standard
negative values
of
FLT_EVAL_METH
OD.

The analysis flags the include of float.h if values
of FLT_EVAL_METHOD are outside the set, {-1, 0, 1,
2}. Only the values in this set lead to well-defined
behavior for floating-point operations.

See section 5.2.4.2.2 of the C99 Standard.

 MISRA C:2012 Dir 1.1

5-3

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.6: Floating
Point

The direction of
rounding when
an integer is
converted to a
floating-point
number that
cannot exactly
represent the
original value.

The analysis flags conversions from integer to
floating-point data types of smaller size (for
example, 64-bit int to 32-bit float).

See section 6.3.1.4 of the C99 Standard.

J.3.6: Floating
Point

The direction of
rounding when a
floating-point
number is
converted to a
narrower
floating-point
number.

The analysis flags these conversions:

• double to float
• long double to double or float

See section 6.3.1.5 of the C99 Standard.

J.3.6: Floating
Point

The default state
for the
FENV_ACCESS
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FENV_ACCESS ON

or

#pragma STDC FENV_ACCESS OFF

See section 7.6.1 of the C99 Standard.
J.3.6: Floating
Point

The default state
for the
FP_CONTRACT
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FP_CONTRACT ON

or

#pragma STDC FP_CONTRACT OFF

See section 7.12.2 of the C99 Standard.

5 MISRA C 2012

5-4

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.11:
Preprocessing
Directives

The behavior on
each recognized
non-STDC
#pragma
directive.

The analysis flags the pragma usage:

#pragma pp-tokens

where the processing token STDC does not
immediately followpragma. For instance:

#pragma FENV_ACCESS ON

See section 6.10.6 of the C99 Standard.
J.3.12: Library
Functions

Whether the
feraiseexcept
function raises
the ‘‘inexact’’
floating-point
exception in
addition to the
‘‘overflow’’ or
‘‘underflow’’
floating-point
exception.

The analysis flags calls to the feraiseexcept
function.

See section 7.6.2.3 of the C99 Standard.

J.3.12: Library
Functions

Strings other
than "C" and ""
that may be
passed as the
second argument
to the
setlocale
funtion.

The analysis flags calls to the setlocale function
when its second argument is not "C" or "".

See section 7.11.1.1 of the C99 Standard.

J.3.12: Library
Functions

The types defined
for float_t and
double_t when
the value of the
FLT_EVAL_METH
OD macro is less
than 0 or greater
than 2.

The analysis flags the include of math.h if
FLT_EVAL_METHOD has values outside the set
{0,1,2}.

See section 7.12 of the C99 Standard.

 MISRA C:2012 Dir 1.1

5-5

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.12: Library
Functions

The base-2
logarithm of the
modulus used by
the remquo
functions in
reducing the
quotient.

The analysis flags calls to the remquo, remquof
and remquol function.

See section 7.12.10.3 of the C99 Standard.

J.3.12: Library
Functions

The termination
status returned
to the host
environment by
the abort, exit,
or _Exit
function.

The analysis flags calls to the abort, exit, or
_Exit function.

See sections 7.20.4.1, 7.20.4.3 or 7.20.4.4 of the C99
Standard.

Check Information
Group: The implementation
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017b

5 MISRA C 2012

5-6

MISRA C:2012 Dir 2.1
All source files shall compile without any compilation errors

Description

Directive Definition

All source files shall compile without any compilation errors.

Rationale

A conforming compiler is permitted to produce an object module despite the presence of
compilation errors. However, execution of the resulting program can produce unexpected
behavior.

Polyspace Specification

The software raises a violation of this directive if it finds a compilation error. Because
Code Prover is more strict about compilation errors compared to Bug Finder, the coding
rules checking in the two products can produce different results for this directive.

Message in Report

All source files shall compile without any compilation errors.

Check Information
Group: Compilation and build
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Dir 2.1

5-7

See Also
MISRA C:2012 Rule 1.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-8

MISRA C:2012 Dir 4.1
Run-time failures shall be minimized

Description

Directive Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Specification

This directive is checked through the Polyspace analysis. For more information, see:

• “Defects”.
• “Run-Time Checks” (Polyspace Code Prover).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

Run-time failures shall be minimized.

 MISRA C:2012 Dir 4.1

5-9

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1
| MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-10

MISRA C:2012 Dir 4.3
Assembly language shall be encapsulated and isolated

Description

Directive Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Specification

Polyspace does not raise a warning on assembly language code encapsulated in the
following:

• asm functions or asm pragmas
• Macros

Message in Report

Assembly language shall be encapsulated and isolated

 MISRA C:2012 Dir 4.3

5-11

Examples

Assembly Language Code in C Function
enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 // Software interrupt for task switching
 asm volatile
 (
 "SWI &02" /* Service #1: calculate run-time */
);
 return;
}

In this example, the rule violation occurs because the assembly language code is
embedded directly in a C function taskHandler that contains other C language
statements.

One possible correction is to encapsulate the assembly language code in a macro and
invoke the macro in the function taskHandler.

#define RUN_TIME_CALC \
asm volatile \
 (\
 "SWI &02" /* Service #1: calculate run-Time */ \
)\

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 RUN_TIME_CALC;
 return;
}

5 MISRA C 2012

5-12

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.3

5-13

MISRA C:2012 Dir 4.5
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous

Description

Directive Definition

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale

What “unambiguous” means depends on the alphabet and language in which source code
is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should
not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

5 MISRA C 2012

5-14

Message in Report

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Dir 4.5

5-15

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-16

MISRA C:2012 Dir 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Directive Definition

typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification

Polyspace does consider the use of basic types in a typedef statement as a violation of
this directive.

Message in Report

typedefs that indicate size and signedness should be used in place of the basic numerical
types

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Dir 4.6

5-17

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-18

MISRA C:2012 Dir 4.7
If a function returns error information, then that error information shall be tested

Description

Directive Definition

If a function returns error information, then that error information shall be tested.

Rationale

Typically a function indicates whether an error occurred during execution, via a special
return value or by another means.

If a function provides a mechanism to determine errors, before you use the function
return value, you must check for such errors.

Polyspace Specification

The checking of this directive follows the same specifications as the defect checker
Returned value of a sensitive function not checked.

This directive is only partially supported.

Message in Report

If a function returns error information, then that error information shall be tested.

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Dir 4.7

5-19

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-20

MISRA C:2012 Dir 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Directive Definition

A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Specification

Polyspace considers all function-like macro definitions.

Message in Report

A function should be used in preference to a function-like macro where they are
interchangeable

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Dir 4.9

5-21

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-22

MISRA C:2012 Dir 4.10
Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description

Directive Definition
Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale
When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once, leading to confusion. If this
multiple inclusion produces multiple or conflicting definitions, then your program can
have undefined or erroneous behavior.

For instance, suppose that a header file contains:
#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64
and another that undefines it, you can have conflicting definitions of env_var.

Polyspace Specification
If you include a header file whose contents are not guarded from multiple inclusion, the
analysis raises a violation of this directive. The violation is shown at the beginning of the
header file.

You can guard the contents of a header file from multiple inclusion by using one of the
following methods:

 MISRA C:2012 Dir 4.10

5-23

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as
noncompliant.

Message in Report

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Examples

Code After Macro Guard
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);
#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func2(void) is outside the
guard.

5 MISRA C 2012

5-24

Note You can have comments outside the macro guard.

Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func(void) is outside the
guard.

Note You can have comments outside the macro guard.

Mismatch in Macro Guard
#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the
#ifndef statement is different from the name in the following #define statement.

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Dir 4.10

5-25

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-26

MISRA C:2012 Dir 4.11
The validity of values passed to library functions shall be checked

Description

Directive Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them. Even
if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Specification

Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt
• tan
• pow
• log
• log10
• fmod
• acos

 MISRA C:2012 Dir 4.11

5-27

• asin
• acosh
• atanh
• or atan2

Tip To mass-justify all results related to the same library function, use the Detail
column on the Results List pane. Click the column header so that all results with the
same entry are grouped together. Select the first result and then select the last result
while holding the Shift key. Assign a status to one of the results. If you do not see the
Detail column, right-click any other column header and enable this column.

Message in Report

The validity of values passed to library functions shall be checked

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-28

MISRA C:2012 Dir 4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Description

Directive Definition
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Rationale
You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance,
if you call a resource allocation function on a certain execution path, you must call a
deallocation function on that path.

Polyspace Specification
Polyspace Bug Finder detects a violation of this rule if you specify multitasking options
and your code contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock
function.

 MISRA C:2012 Dir 4.13

5-29

• Missing unlock: A task calls a lock function but ends without a call to the
corresponding unlock function.

• Double lock: A task calls a lock function twice without an intermediate call to an
unlock function.

• Double unlock: A task calls an unlock function twice without an intermediate call
to a lock function.

For more information on the multitasking options, see “Multitasking”.

Message in Report

Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Examples

Multitasking: Lock Function That Is Missing Unlock Function
typedef signed int int32_t;
typedef signed short int16_t;

typedef struct tag_mutex_t {
 int32_t value;
} mutex_t;

extern mutex_t mutex_lock (void);
extern void mutex_unlock (mutex_t m);

extern int16_t x;
void func(void);

void task1(void) {
 func();
}

void task2(void) {
 func();
}

5 MISRA C 2012

5-30

void func (void) {
 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {
 mutex_unlock (m);
 } else {
 /* Mutex not unlocked on this path */
 }
}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock

is not called.

To enable detection of this rule violation, you must specify these analysis options.
Option Specification
Configure multitasking
manually
Entry points task1

task2
Critical section details Starting routine Ending routine

mutex_lock mutex_unlock

For more information on the options, see:

• Entry points (-entry-points)
• Critical section details (-critical-section-begin -critical-

section-end)

Check Information
Group: Code design
Category: Advisory

 MISRA C:2012 Dir 4.13

5-31

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 22.1 | MISRA C:2012 Rule 22.2 | MISRA C:2012 Rule
22.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-32

MISRA C:2012 Dir 4.14
The validity of values received from external sources shall be checked

Description

Directive Definition

The validity of values received from external sources shall be checked.

Rationale

The values originating from external sources can be invalid because of errors or
deliberate modification by attackers. Before using the data, you must check the data for
validity.

For instance:

• Before using an external input as array index, you must check if it can potentially
cause an array bounds error.

• Before using a variable to control a loop, you must check if it can potentially result in
an infinite loop.

Message in Report

The validity of values received from external sources shall be checked.

Examples

Validity of External Values Not Checked
#include <stdio.h>

void f1(char from_user[])

 MISRA C:2012 Dir 4.14

5-33

{
 char input [128];
 (void) sscanf (from_user, "%128c", input);
 (void) sprintf ("%s", input);
}

In this example, the sscanf statement is noncompliant as there is no check to ensure
that the user input is null terminated. The subsequent sprintf statement that outputs
the string can potentially lead to an array bounds error (buffer overrun).

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-34

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Specification

The rule violation can come from multiple causes. Standard compilation error messages
do not lead to a violation of this MISRA rule.

Tip To mass-justify all results that come from the same cause, use the Detail column on
the Results List pane. Click the column header so that all results with the same entry
are grouped together. Select the first result and then select the last result while holding
the Shift key. Assign a status to one of the results. If you do not see the Detail column,
right-click any other column header and enable this column.

Message in Report
• Too many nesting levels of #includes: N1. The limit is N0.
• Integer constant is too large.
• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.

 MISRA C:2012 Rule 1.1

5-35

• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-36

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Specification

All the supported extensions lead to a violation of this MISRA rule.

Message in Report
• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.

 MISRA C:2012 Rule 1.2

5-37

• ANSI C90 forbids __func__ predefined identifier.
• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-38

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report

There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 1.3

5-39

Introduced in R2014b

5 MISRA C 2012

5-40

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute.
The unreachable code cannot affect the program output. The presence of unreachable
code can indicate an error in the program logic. Unreachable code that the compiler does
not remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA
checker for rule 2.1. See also Unreachable code. The run-time check performs a more
exhaustive analysis. In the process, the check can show some instances that are not
strictly unreachable code but unreachable only in the context of the analysis. For
instance, in the following code, the run-time check shows a potential division by zero in
the first line and then removes the zero value of flag for the rest of the analysis.
Therefore, it considers the if block unreachable.

 MISRA C:2012 Rule 2.1

5-41

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Message in Report

A project shall not contain unreachable code.

Examples

Code Following return Statement
enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{
 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {
 error_handler ();
 break;
 }
 }

 res = color;

5 MISRA C 2012

5-42

 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.1

5-43

MISRA C:2012 Rule 2.2
There shall be no dead code

Description

Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Polyspace Specification
Polyspace Bug Finder detects useless write operations during analysis.

Message in Report
There shall be no dead code.

Examples

Redundant Operations
extern volatile unsigned int v;
extern char *p;

5 MISRA C 2012

5-44

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but
the result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

• The result of an operation is used. For instance, the operation * on p is not
redundant, because *p is incremented.

Redundant Function Call
void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

 MISRA C:2012 Rule 2.2

5-45

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 17.7 | Write without a further read

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-46

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report

A project should not contain unused type declarations: type XX is not used.

Examples

Unused Local Type
signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */
 return 67;

}

signed short usedType (void){

 typedef signed short myType; /* Compliant */
 myType tempVar = 67;
 return tempVar;

 MISRA C:2012 Rule 2.3

5-47

}

In this example, in function unusedType, the typedef statement defines a new local
type myType. However, this type is never used in the function. Therefore, the rule is
violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-48

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition
A project should not contain unused tag declarations.

Rationale
If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report
A project should not contain unused tag declarations: tag tag_name is not used.

Examples

Tag Defined in Function but Not Used
void unusedTag (void)
{
 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */
}

void usedTag (void)
{
 enum state2 { S_init, S_run, S_sleep }; /* Compliant */
 enum state2 my_State = S_init;
}

In this example, in the function unusedTag, the tag state1 is defined but not used.
Therefore, the rule is violated.

 MISRA C:2012 Rule 2.4

5-49

Tag Used in typedef Only
typedef struct record_t /* Non-compliant */
{
 unsigned short key;
 unsigned short val;
} record1_t;

typedef struct /* Compliant */
{
 unsigned short key;
 unsigned short val;
} record2_t;

record1_t myRecord1_t;
record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the
rest of the translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-50

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Examples

Unused Macro Definition
void use_macro (void)
{
 #define SIZE 4
 #define DATA 3

 use_int16(SIZE);
}

In this example, the macro DATA is never used in the use_macro function.

 MISRA C:2012 Rule 2.5

5-51

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-52

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description

Rule Definition

A function should not contain unused label declarations.

Rationale

If you declare a label but do not use it, it is not clear to a reviewer of your code if the label
is redundant or unused by mistake.

Message in Report

A function should not contain unused label declarations.

Label label_name is not used.

Examples

Unused Label Declarations
void use_var(signed short);

void unused_label (void)
{
 signed short x = 6;

label1: /* Non-compliant - label1 not used */
 use_var (x);
}

 MISRA C:2012 Rule 2.6

5-53

void used_label (void)
{
 signed short x = 6;

 for (int i=0; i < 5; i++) {
 if (i==2) goto label1;
 }

label1: /* Compliant - label1 used */
 use_var (x);
}

In this example, the rule is violated when the label label1 in function unused_label is
not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-54

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description

Rule Definition

There should be no unused parameters in functions.

Rationale

If a parameter is unused, it is possible that the implementation of the function does not
match its specifications. This rule can highlight such mismatches.

Message in Report

There should be no unused parameters in functions.

Parameter parameter_name is not used.

Examples

Unused Function Parameters
double func(int param1, int* param2) {
 return (param1/2.0);
}

In this example, the rule is violated because the parameter param2 is not used.

Check Information
Group: Unused code

 MISRA C:2012 Rule 2.7

5-55

Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Unused parameter

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-56

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition
The character sequences /* and // shall not be used within a comment.

Rationale
These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Specification
You cannot annotate this rule in the source code.

For information on annotations, see “Annotate and Hide Known or Acceptable Results”.

Message in Report
The character sequence /* shall not appear within a comment.

Examples

/* Used in // Comments
int x;
int y;

 MISRA C:2012 Rule 3.1

5-57

int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant
 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an
entirely different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”

5 MISRA C 2012

5-58

“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 3.1

5-59

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out
of code.

Message in Report

Line-splicing shall not be used in // comments.

Examples

Line Splicing in // Comment
#include <stdbool.h>

extern _Bool b;

void func (void)
{
 unsigned short x = 0; // Non-compliant - Line-splicing \
 if (b)

5 MISRA C 2012

5-60

 {
 ++b;
 }
}

Because of line-splicing, the statement if (b) is a part of the previous // comment.
Therefore, the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

Introduced in R2014b

 MISRA C:2012 Rule 3.2

5-61

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed by
other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report

Octal and hexadecimal escape sequences shall be terminated.

Examples

Compliant and Noncompliant Escape Sequences
const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

5 MISRA C 2012

5-62

In this example, the rule is violated when an escape sequence is not terminated with the
end of string literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.1

5-63

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description

Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Specification

The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed
during preprocessing. Therefore, Polyspace raises a violation of this rule even if a
trigraph appears in code comments.

Message in Report

Trigraphs should not be used.

5 MISRA C 2012

5-64

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.2

5-65

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31
characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-37.

Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Examples

C90: First Six Characters of Identifiers Not Unique
int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

5 MISRA C 2012

5-66

C99: First 31 Characters of Identifiers Not Unique
int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation Units Differ
in Case Alone
/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in
external identifiers. The identifiers in the two translation are different but are not
distinct in their significant characters.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 5.1

5-67

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-68

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description

Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-37.

Message in Report

Identifier XX has same significant characters as identifier YY.

Examples

C90: First 31 Characters of Identifiers Not Unique
extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double engine_exhaust_gas_temperature_raw;
static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)
{
 /* Not in the same scope */

 MISRA C:2012 Rule 5.2

5-69

 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

C99: First 63 Characters of Identifiers Not Unique
extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;
static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;
 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;
static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;
 /* Compliant */

void func (void)
{
/* Not in the same scope */
 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;
 /* Compliant */
}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale
has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-70

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 |
MISRA C:2012 Rule 5.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.2

5-71

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale
If two identifiers have the same name but different scope, the identifier in the inner
scope hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-37.

Message in Report
Variable XX hides variable XX (FILE line LINE column COLUMN).

Examples

Local Variable Hidden by Another Local Variable in Inner Block
typedef signed short int16_t;

5 MISRA C 2012

5-72

void func(void)
{
 int16_t i;
 {
 int16_t i; /* Non-compliant */
 i = 3;
 }
}

In this example, the identifier i defined in the inner block in func hides the identifier i
with function scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter
typedef signed short int16_t;

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);
int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */
{
 g (&xyz);
}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g
(&xyz).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory

 MISRA C:2012 Rule 5.3

5-73

Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-74

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-37.

Message in Report
• Macro identifiers shall be distinct. Macro XX has same significant characters as

macro YY.
• Macro identifiers shall be distinct. Macro parameter XX has same significant

characters as macro parameter YY in macro ZZ.

Examples

C90: First 31 Characters of Macro Names Not Unique
#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

 MISRA C:2012 Rule 5.4

5-75

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has
the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

C99: First 63 Characters of Macro Names Not Unique
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s
 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s
 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_s
caled has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

5 MISRA C 2012

5-76

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.4

5-77

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition

Identifiers shall be distinct from macro names.

Rationale

The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the option, Respect C90 Standard on page 1-37.

Message in Report

Identifier XX has same significant characters as macro YY.

Examples

Macro Names Same as Identifier Names
#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

5 MISRA C 2012

5-78

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

C90: First 31 Characters of Macro Name Same as Identifier Name
#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.5

5-79

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition
A typedef name shall be a unique identifier.

Rationale
Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report
XX conflicts with the typedef name YY.

Examples

typedef Names Reused
void func (void){
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant */
 }
}

typedef float mass;
void func1 (void){
 float mass = 0.0f; /* Non-compliant */
}

5 MISRA C 2012

5-80

In this example, the typedef name u8_t is used twice. The typedef name mass is also
used as an identifier name.

typedef Name Same as Structure Name
typedef struct list{ /* Compliant - exception */
 struct list *next;
 unsigned short element;
} list;

typedef struct{
 struct chain{ /* Non-compliant */
 struct chain *list2;
 unsigned short element;
 } s1;
 unsigned short length;
} chain;

In this example, the typedef name list is the same as the original name of the struct
type. The rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct
type. The name chain is associated with a different struct type. Therefore, it clashes
with the typedef name.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.7

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 5.6

5-81

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-82

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Message in Report

XX conflicts with the tag name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.7

5-83

Introduced in R2014b

5 MISRA C 2012

5-84

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such
identifiers are not unique, they are not likely to cause confusion.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.3

 MISRA C:2012 Rule 5.8

5-85

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-86

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Specification

This rule checker assumes that rule 5.8 is not violated.

Message in Report
• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 5.9

5-87

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-88

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report

Bit-fields shall only be declared with an appropriate type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 6.1

5-89

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-90

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Specification

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report

Single-bit named bit fields shall not be of a signed type.

Check Information
Group: Types
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 6.2

5-91

Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-92

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description

Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Message in Report

Octal constants shall not be used.

Examples

Use of octal constants
#define CST 021
#define VALUE 010 /* Compliant - constant not used */
#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */

 MISRA C:2012 Rule 7.1

5-93

 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */
 value1 = !(value1 != 0); /* Compliant */
 }
}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-94

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability

 MISRA C:2012 Rule 7.2

5-95

Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-96

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report

The lowercase character “l” shall not be used in a literal suffix.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 7.3

5-97

Introduced in R2014b

5 MISRA C 2012

5-98

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”

Description

Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Examples

Incorrect Assignment of String Literal
char *str1 = "AccountHolderName";
const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */
void checkAccount2(const char*); /* Compliant */

 MISRA C:2012 Rule 7.4

5-99

void main() {
 checkAccount1("AccountHolderName"); /* Non-Compliant */
 checkAccount2("AccountHolderName"); /* Compliant */
}

In this example, the rule is not violated when string literals are assigned to const
char* pointers, either directly or through copy of function arguments. The rule is
violated only when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-100

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition

Types shall be explicitly specified.

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the
int type is implicitly specified. Examples of potential circumstances in which you can
use an implicit int are:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

The omission of an explicit type can lead to confusion. For example, in the declaration
extern void foo (char c, const k);, the type of k is const int, but const
char might have been expected.

Message in Report

Types shall be explicitly specified.

Check Information
Group: Declarations and Definitions
Category: Required

 MISRA C:2012 Rule 8.1

5-101

AGC Category: Required
Language: C90

See Also
MISRA C:2012 Rule 8.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-102

MISRA C:2012 Rule 8.2
Function types shall be in prototype form with named parameters

Description

Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The mismatch between the number of arguments and parameters, their types, and the
expected and actual return type of a function provides potential for undefined behavior.
This rule also requires that you specify names for all the parameters in a declaration.
The parameter names provide useful information regarding the function interface. A
mismatch between a declaration and definition can indicate a programming error.

Polyspace Specification

Polyspace also checks the function definition.

Message in Report
• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 8.2

5-103

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-104

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using types and qualifiers across declarations of the same object or function
encourages stronger typing. By specifying parameter names in function prototypes,
Polyspace can check for interface consistency between the function definition and
declarations.

Polyspace Specification

Polyspace generates some violations of this rule during the link phase.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its

definition.
• Global declaration of variable_name variable has incompatible type with its

definition.
• All declarations of an object or function shall use the same names and type qualifiers.

 MISRA C:2012 Rule 8.3

5-105

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-106

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition

A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale

If a declaration for an object or function is visible when the object or function is defined, a
compiler must check that the declaration and definition are compatible. In the presence
of function prototypes, as required by rule 8.2, checking extends to the number and type
of function parameters. A better way of implementing declarations of objects and
functions with external linkage is to declare them in a header file. Then include the
header file in all those code files that require them, including the one that defines them.

Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 8.4

5-107

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 |
MISRA C:2012 Rule 17.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-108

MISRA C:2012 Rule 8.5
An external object or function shall be declared once in one and only one file

Description

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

Typically, a single declaration is made in a header file that you include in any translation
unit in which the identifier is defined or used. This inclusion ensures consistency
between:

• The declaration and the definition
• The declarations in different translation units

Note It is possible to have many header files in a project, but each external object or
function is declared in only one header file.

Polyspace Specification

Polyspace checks only explicit extern declarations (tentative definitions are ignored).
The rule checker considers that variables or functions declared extern in a non-header
file violates this rule.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Object object_name has external declarations in multiples files.

 MISRA C:2012 Rule 8.5

5-109

• Function function_name has external declarations in multiples files.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-110

MISRA C:2012 Rule 8.6
An identifier with external linkage shall have exactly one external definition

Description

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

The behavior is undefined if you use an identifier for which multiple definitions exist (in
different files) or no definition exists. Multiple definitions in different files are not
permitted by this rule even if the definitions are the same. If the declarations are
different, or initialize the identifier to different values, it is undefined behavior.

Polyspace Specification

The checker flags multiple definitions only if the definitions occur in different files. The
checker does not:

• Consider tentative definitions as definitions.

For instance, the following code does not violate the rule:

int val;
int val=1;

• Does not show a violation for functions that are called in the source code with
external linkage but not defined.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

 MISRA C:2012 Rule 8.6

5-111

Message in Report
• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-112

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in
only one translation unit.

Rationale

Restricting or reducing the visibility of an object by giving it internal linkage or no
linkage reduces the chance that it is accessed inadvertently. Compliance with this rule
also avoids any possibility of confusion between your identifier and an identical identifier
in another translation unit or a library.

Polyspace Specification

If your program does not use the externally defined function or object, Polyspace does not
raise a warning.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

 MISRA C:2012 Rule 8.7

5-113

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-114

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale

If you have an object or function declared with extern, and another declaration of the
object or function is already visible, the linkage can be confusing. You expect that the
extern storage class specifier creates external linkage. Apply the static storage class
specifier to objects and functions with internal linking.

Message in Report

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Examples

Internal and External Linkage Conflicts
static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

 MISRA C:2012 Rule 8.8

5-115

In this example, the first line defines foo with internal linkage. Because the example
uses the static keyword, the first line is compliant. However, the second line does not
use static in the declaration, so the declaration is noncompliant. By comparison, the
third line declares hhh with an extern keyword creating external linkage. The fourth
line declares hhh with internal linkage, but this declaration conflicts with the first
declaration of hhh.

One possible correction is to use static and extern consistently:

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Internal linkage
static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(void); /* Compliant - declaration: internal linkage */
extern int ggg(void){ /* Non-compliant */
 return 1 + x;
}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-116

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.8

5-117

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition

An object should be defined at block scope if its identifier only appears in a single
function.

Rationale

Defining an object at block scope reduces the possibility that you inadvertently access the
object . It ensures your program does not access the object elsewhere.

Polyspace Specification

Polyspace raises a warning only for static objects.

Message in Report

An object should be defined at block scope if its identifier only appears in a single
function.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-118

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.9

5-119

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function with external linkage, you can call the external definition of
the function or the inline definition. This behavior can affect the execution time and
therefore impact your program.

Tip To make an inline function available to several translation units, place its definition
in a header file.

Message in Report

An inline function shall be declared with the static storage class.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9

5 MISRA C 2012

5-120

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.10

5-121

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with incomplete type and access its elements,
it is safer to state the size of the array explicitly. Providing size information for each
declaration allows the software to check the declarations for consistency. It also allows a
static checker to perform array bounds analysis without analyzing more than one unit.

Message in Report

Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Examples

Array Declarations
extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but no
specified size. array2 is noncompliant because for arrays with external linkage, you
must explicitly specify a size.

5 MISRA C 2012

5-122

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.11

5-123

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Description

Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale

An implicitly specified enumeration constant has a value 1 greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the value of the associate constant expression.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Message in Report

The constant constant1 has same value as the constant constant2.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-124

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.12

5-125

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description

Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Specification

Polyspace issues a warning if a non-const pointer parameter either:

• Does not modify the addressed object.
• Is passed to a call of a function that is declared with a const pointer parameter.

Message in Report

A pointer should point to a const-qualified type whenever possible.

Examples

Pointer Parameters
#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */

5 MISRA C 2012

5-126

 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters. In the ptr_ex
function, p does not modify an object. However, the type to which p points is not const-
qualified, so it is noncompliant. In last_char, the pointer s is const-qualified but the
type it points to is not. Because s does not modify an object, this parameter is
noncompliant. The function first does not modify the elements of the array a. However,
the element type is not const-qualified, so a is also noncompliant.

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 8.13

5-127

Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-128

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, make sure that the memory areas operated on by two or more pointers do not
overlap.

Message in Report

The restrict type qualifier shall not be used.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 8.14

5-129

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-130

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description
Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been
set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of
an enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Specification

The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

The value of an object with automatic storage duration shall not be read before it has
been set.

 MISRA C:2012 Rule 9.1

5-131

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-132

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a
structure that contains an array, the values assigned to the structure must be enclosed
in braces. Within these braces, the values assigned to the array must be enclosed in
another pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report

The initializer for an aggregate or union shall be enclosed in braces.

Examples

Initialization of Two-dimensional Arrays
void initialize(void) {
 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */

 MISRA C:2012 Rule 9.2

5-133

 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */
 int z[4][2] = {0}; /* Compliant */
 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */
}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-134

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report

Arrays shall not be partially initialized.

Examples

Partial and Complete Initializations
void func(void) {
 int x[3] = {0,1,2}; /* Compliant */
 int y[3] = {0,1}; /* Non-compliant */
 int z[3] = {0}; /* Compliant - exception */
 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */
 int b[30] = {{1} = 1, 1}; /* Non-compliant */
 char c[20] = "Hello World"; /* Compliant - exception */
}

In this example, the rule is not violated when each array element is explicitly initialized.

 MISRA C:2012 Rule 9.3

5-135

The rule is violated when some elements of the array are implicitly initialized.
Exceptions include the following:

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-136

MISRA C:2012 Rule 9.4
An element of an object shall not be initialized more than once

Description

Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of objects such as arrays in
any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report

An element of an object shall not be initialized more than once.

Examples

Array Initialization Using Designated Initializers
void func(void) {
 int a[5] = {-2,-1,0,1,2}; /* Compliant */
 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};
 /* Compliant */
 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};
 /* Non-compliant */
}

In this example, the rule is violated when the array element c[1] is initialized twice
using a designated initializer.

 MISRA C:2012 Rule 9.4

5-137

Structure Initialization Using Designated Initializers
struct myStruct {
 int a;
 int b;
 int c;
 int d;
};

void func(void) {
 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */
 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};
 /* Compliant */
 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};
 /* Non-compliant */
}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-138

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Examples

Using Designated Initializers Without Specifying Array Size
int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */
int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);

 MISRA C:2012 Rule 9.5

5-139

 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-140

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description

Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale

An essential type category defines the essential type of an object or expression.
Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must
specify this type name before coding rules checking. For
more information, see “Specify Boolean Types”.

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type
column is not empty for that row, there is a MISRA restriction when using that type as
the operand. The number in the table corresponds to the rationale list after the table.

 MISRA C:2012 Rule 10.1

5-141

Operation Essential type category of arithmetic operand

Operator Operand Boolean characte
r enum signed unsigne

d floating

[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2

?: 2nd and
3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand of

essentially character type. The numeric values of character data are
implementation-defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

5 MISRA C 2012

5-142

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

Message in Report

The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Examples

Violation of Rule 10.1, Rationale 2: Inappropriate Operand Types for
Operators That Take Essentially Boolean Operands
typedef unsigned char boolean;

extern float f32a;
extern char cha;
extern signed char s8a;
extern unsigned char u8a;
enum enuma { a1, a2, a3 } ena;

extern boolean bla, blb, rbla;

void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */
 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */
 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */
 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */
 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */

 rbla = bla && blb; /* Compliant */
 ru8a = bla ? u8a : u8b; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because:

 MISRA C:2012 Rule 10.1

5-143

• The operator && expects only essentially Boolean operands. However, at least one of
the operands used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different
operand type is used.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Boolean Types”.

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } ena;
enum { K1 = 1, K2 = 2 }; /* Essentially signed */
extern char cha, chb;
extern boolean bla, blb, rbla;
extern signed char rs8a, s8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */
 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */
 rbla = cha > chb; /* Compliant */
 rbla = ena > a1; /* Compliant */
 rbla = u8a > 0U; /* Compliant */
 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not
expect essentially Boolean operands. However, the operands used here are essentially
Boolean.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Boolean Types”.

5 MISRA C 2012

5-144

Violation of Rule 10.1, Rationale 4: Inappropriate Character Operands
extern char rcha, cha, chb;
extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */
 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */
 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do
not expect essentially character operands. However, at least one of the operands used
here has essentially character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/
 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/
 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --,
* and += do not expect essentially enum operands. However, at least one of the operands
used here has essentially enum type.

Violation of Rule 10.1, Rationale 6: Inappropriate Signed Operand for
Bitwise Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

 MISRA C:2012 Rule 10.1

5-145

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */
 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations
must not be performed on essentially signed operands. However, the operands used here
are signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right Operand
for Shift Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */
 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */
 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not
expect an essentially signed right operand. However, the right operands used here are
signed.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-146

See Also
MISRA C:2012 Rule 10.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.1

5-147

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations

Description

Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale

Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report
• The operand_name operand of the + operator applied to an expression of essentially

character type shall have essentially signed or unsigned type.
• The right operand of the - operator applied to an expression of essentially character

type shall have essentially signed or unsigned or character type.
• The left operand of the - operator shall have essentially character type if the right

operand has essentially character type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-148

See Also
MISRA C:2012 Rule 10.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.2

5-149

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report
• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule
10.6

5 MISRA C 2012

5-150

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.3

5-151

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Specification

Polyspace does not produce a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the

signed constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned
char variables, does not violate the rule because the constants 3 and 3U have the
same representation.

Message in Report

Operands of operator_name operator shall have the same essential type category.

5 MISRA C 2012

5-152

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.4

5-153

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition
The value of an expression should not be cast to an inappropriate essential type.

Rationale
Converting Between Variable Types

 From
Boolean character enum signed unsigned floating

To

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid
floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is not
necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

Some acceptable explicit casts are:

5 MISRA C 2012

5-154

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The value of an expression should not be cast to an inappropriate essential type.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.5

5-155

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential
type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The composite expression is assigned to an object with a wider essential type.

5 MISRA C 2012

5-156

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.6

5-157

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

For information on essential types, see MISRA C:2012 Rule 10.1.

5 MISRA C 2012

5-158

Message in Report

• The right operand shall not have wider essential type than the left operand which is a
composite expression.

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.7

5-159

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition

The value of a composite expression shall not be cast to a different essential type category
or a wider essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

For information on essential types, see MISRA C:2012 Rule 10.1.

5 MISRA C 2012

5-160

Message in Report

• The value of a composite expression shall not be cast to a different essential type
category.

• The value of a composite expression shall not be cast to a wider essential type.

Examples

Casting to Different or Wider Essential Type
extern unsigned short ru16a, u16a, u16b;
extern unsigned int u32a, ru32a;
extern signed int s32a, s32b;

void foo(void)
{
 ru16a = (unsigned short) (u32a + u32a);/* Compliant */
 ru16a += (unsigned short) s32a + s32b;
 /* Noncompliant - different essential type */
 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */
 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */
}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a +
s32b) is cast to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result
(s32a + s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 10.8

5-161

See Also
MISRA C:2012 Rule 10.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-162

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function
pointers have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Specification

Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report

Conversions shall not be performed between a pointer to a function and any other type.

 MISRA C:2012 Rule 11.1

5-163

Examples

Cast between two function pointers
typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

5 MISRA C 2012

5-164

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.1

5-165

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other
type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Examples

Casts from incomplete type
struct s *sp;
struct t *tp;

5 MISRA C 2012

5-166

short *ip;
struct ct *ctp1;
struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */
 sp = (struct s *) 1234; /* Non-compliant */
 tp = (struct t *) sp; /* Non-compliant */
 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to
 * a pointer to an incomplete type */
 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */
 struct s *f(void);
 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 11.2

5-167

See Also
MISRA C:2012 Rule 11.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-168

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description

Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char
• signed char
• unsigned char

Message in Report

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

 MISRA C:2012 Rule 11.3

5-169

Examples

Noncompliant: Cast to Pointer Pointing to Object of Wider Type
signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower Type
extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of
the memory location that &u points to. But, from the result of display(u), you might
find that the high bits have not been cleared.

Compliant: Cast Adding a Type Qualifier
const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

5 MISRA C 2012

5-170

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule
11.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.3

5-171

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed between a pointer to object and an integer type.

Examples

Casts between pointer and integer
#include <stdbool.h>

typedef unsigned char uint8_t;

5 MISRA C 2012

5-172

typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to
a pointer in a header file. To avoid the assignment being flagged, you can then
exclude headers files from coding rules checking. For more information, see Do not
generate results for (-do-not-generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 11.4

5-173

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule
11.9

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-174

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description

Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed from pointer to void into pointer to object.

Examples

Cast from Pointer to void
void foo(void) {

 unsigned int u32a = 0;
 unsigned int *p32 = &u32a;
 void *p;
 unsigned int *p16;

 MISRA C:2012 Rule 11.5

5-175

 p = p32; /* Compliant - pointer to uint32_t
 * into pointer to void */
 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */
 p32 = (unsigned int *) p; /* Non-compliant */
}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-176

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the
allowed range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A cast shall not be performed between pointer to void and an arithmetic type.

 MISRA C:2012 Rule 11.6

5-177

Examples

Casts Between Pointer to void and Arithmetic Types
void foo(void) {

 void *p;
 unsigned int u;
 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */
 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-178

Introduced in R2014b

 MISRA C:2012 Rule 11.6

5-179

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined
behavior. If a pointer is cast to one of those types, the resulting value can be outside
the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Examples

Casts from Pointer to Non-Integer Arithmetic Types
int foo(void) {

 short *p;
 float f;
 long *l;

5 MISRA C 2012

5-180

 f = (float) p; /* Non-compliant */
 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */
}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.7

5-181

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the
read-only status of an object. If a cast removes the qualifier, the object is no longer read-
only.

Polyspace Specification

Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

5 MISRA C 2012

5-182

Examples

Casts That Remove Qualifiers
void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 pi = (unsigned short *) pvi; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example:

• The variables pci and pcpi have the const qualifier in their type. The rule is
violated when the variables are cast to types that do not have the const qualifier.

• The variable pvi has a volatile qualifier in its type. The rule is violated when the
variable is cast to a type that does not have the volatile qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the
statement p=cpi;. The assignment does not cause a type conversion because both p and
cpi have type unsigned short.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 11.8

5-183

See Also
MISRA C:2012 Rule 11.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-184

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description

Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report

The macro NULL shall be the only permitted form of integer null pointer constant.

Examples

Using 0 for Pointer Assignments and Comparisons
void main(void) {

 int *p1 = 0; /* Non-compliant */
 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0

 MISRA C:2012 Rule 11.9

5-185

#define MY_NULL_2 (void *) 0

 if (p1 == MY_NULL_1) /* Non-compliant */
 { }
 if (p2 == MY_NULL_2) /* Compliant */
 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0
for pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-186

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.
Description Operator and Operand Preceden

ce
Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7

 MISRA C:2012 Rule 12.1

5-187

Description Operator and Operand Preceden
ce

Bitwise XOR ^ 6
Bitwise OR | 5
Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Examples

Ambiguous Precedence in Multi-Operation Expressions
int a, b, c, d, x;

void foo(void) {
 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */
}

This example shows various violations of MISRA rule 12.1. In each violation, if you do
not know the order of operations, the code could execute unexpectedly.

5 MISRA C 2012

5-188

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.
int a, b, c, d, x;

void foo(void) {
 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }
}

Ambiguous Precedence In Preprocessing Expressions
if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */
endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */
endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code. In
each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.
if defined (X) && ((X + Y) > Z)
endif

if ! defined (X) && defined (Y)
endif

Compliant Expressions Without Parentheses
int a, b, c, x;
struct {int a; } s, *ps, *pp[2];

 MISRA C:2012 Rule 12.1

5-189

void foo(void) {
 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */
 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have
 * the same precedence */
}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule
12.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-190

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale

Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less
than 16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Specification

In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report
• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

 MISRA C:2012 Rule 12.2

5-191

Check Information
Group: Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-192

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition

The comma operator should not be used.

Rationale

The comma operator can be detrimental to readability. You can often write the same code
in another form.

Message in Report

The comma operator should not be used.

Examples

Comma Usage in C Code
typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant - case 1 */

int foo(void)
{
 volatile int rd = 1; /* Compliant - case 2*/
 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/

 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/
 int jkl = (abc + xyz, abc + xyz); /* Not compliant - case 1*/

 MISRA C:2012 Rule 12.3

5-193

 var = 1, foo += var, kkk = 3; /* Not compliant - case 2*/
 var = (kkk = 1, foo = 2); /* Not compliant - case 3*/

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}
 /* Not compliant - case 4*/

 if ((abc,xyz)<0) { return 1; } /* Not compliant - case 5*/
}

In this example, the code shows various uses of commas in C code.

Case Reason for noncompliance
1 When reading the code, it is not immediately obvious what jkl

is initialized to. For example, you could infer that jkl has a
value abc+xyz, (abc+xyz)*(abc+xyz), f((abc+xyz),(abc
+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether
foo has a value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value
is assigned to var.

4 When reading the code, it is not immediately obvious which
values control the for loop.

5 When reading the code, it is not immediately obvious whether
the if statement depends on abc, xyz, or both.

Case Reason for compliance
1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.
3 & 4 When using the comma for initialization, the variables and their

values are immediately obvious.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

5 MISRA C 2012

5-194

Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.3

5-195

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description

Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

5 MISRA C 2012

5-196

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.4

5-197

MISRA C:2012 Rule 12.5
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”

Description

Rule Definition

The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

Rationale

The sizeof operator acting on an array normally returns the array size in bytes. For
instance, in the following code, sizeof(arr) returns the size of arr in bytes.

int32_t arr[4];
size_t numberOfElements = sizeof (arr) / sizeof(arr[0]);

However, when the array is a function parameter, it degenerates to a pointer. The
sizeof operator acting on the array returns the corresponding pointer size and not the
array size.

The use of sizeof operator on an array that is a function parameter typically indicates
an unintended programming error.

Message in Report

The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

5 MISRA C 2012

5-198

Examples

Incorrect Use of sizeof Operator

int32_t glbA[] = { 1, 2, 3, 4, 5 };
void f (int32_t A[4])
{
 uint32_t numElements = sizeof(A) / sizeof(int32_t); /* Non-compliant */
 uint32_t numElements_glbA = sizeof(glbA) / sizeof(glbA[0]); /* Compliant */
}

In this example, the variable numElements always has the same value of 1, irrespective
of the number of members that appear to be in the array (4 in this case), because A has
type int32_t * and not int32_t[4].

The variable numElements_glbA has the expected vale of 5 because the sizeof
operator acts on the global array glbA.

Check Information
Group: Expressions
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 12.5

5-199

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report

Initializer lists shall not contain persistent side effects.

Examples

Initializers with Persistent Side Effect
volatile int v;
int x;
int y;

void f(void) {
 int arr[2] = {x+y,x-y}; /* Compliant */
 int arr2[2] = {v,0}; /* Non-compliant */
 int arr3[2] = {x++,y}; /* Non-compliant */
}

5 MISRA C 2012

5-200

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.1

5-201

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends
on the order of evaluation because of multiple accesses.

Examples

Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

5 MISRA C 2012

5-202

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Non-compliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3
| MISRA C:2012 Rule 13.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 13.2

5-203

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-204

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report

A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator.

 MISRA C:2012 Rule 13.3

5-205

Examples

Increment Operator Used in Expression with Other Side Effects
int input(void);
int choice(void);
int operation(int, int);

int func() {
 int x = input(), y = input(), res;
 int ch = choice();
 if (choice == -1)
 return(x++);
 if (choice == 0) {
 res = x++ + y++;
 return(res); /* Non-compliant */
 }
 else if (choice == 1) {
 x++; /* Compliant */
 y++; /* Compliant */
 return (x+y);
 }
 else {
 res = operation(x++,y);
 return(res); /* Non-compliant */
 }
}

In this example, the rule is violated when the expressions containing the ++ operator
have side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

5 MISRA C 2012

5-206

See Also
MISRA C:2012 Rule 13.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.3

5-207

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description

Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the
result of the assignment x=y.

Message in Report

The result of an assignment operator should not be used.

Examples

Result of Assignment Used
int x, y, b, c, d;
int a[10];
unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

5 MISRA C 2012

5-208

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

 if (bool_var = false) {}
 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}
 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}
 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];
 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 13.4

5-209

Introduced in R2014b

5 MISRA C 2012

5-210

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or || operator shall not contain persistent side
effects

Description

Rule Definition

The right hand operand of a logical && or || operator shall not contain persistent side
effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Specification
• For this rule, Polyspace considers that all function calls have a persistent side effect.
• If the right operand is a volatile variable, Polyspace does not flag this as a rule

violation.

Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

 MISRA C:2012 Rule 13.5

5-211

Examples

Right Operand of Logical Operator with Persistent Side Effects
int check (int arg) {
 static int count;
 if(arg > 0) {
 count++; /* Persistent side effect */
 return 1;
 }
 else
 return 0;
}

int getSwitch(void);
int getVal(void);

void main(void) {
 int val = getVal();
 int mySwitch = getSwitch();
 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */
 }

 checkResult = check(val);
 if(checkResult && mySwitch) { /* Compliant */
 }

 if(check(val) && mySwitch) { /* Compliant */
 }
}

In this example, the rule is violated when the right operand of the && operation contains
a function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

The rule is not violated when the left operand contains a function call. Alternatively, to
avoid the rule violation, assign the result of the function call to a variable. Use this
variable in the logical operation in place of the function call.

5 MISRA C 2012

5-212

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or ||
operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add a
comment and justification in your Polyspace result explaining why you retained your
code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.5

5-213

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Specification

The rule is not violated if the argument is a volatile variable.

Message in Report

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Examples

Expressions in sizeof Operator
#include <stddef.h>
int x;
int y[40];
struct S {

5 MISRA C 2012

5-214

 int a;
 int b;
};
struct S myStruct;

void main() {
 size_t sizeOfType;
 sizeOfType = sizeof(x); /* Compliant */
 sizeOfType = sizeof(y); /* Compliant */
 sizeOfType = sizeof(myStruct); /* Compliant */
 sizeOfType = sizeof(x++); /* Non-compliant */
}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.6

5-215

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in a
mismatch between the expected and actual number of iterations. This rounding error can
happen when a loop step that is not a power of the floating point radix is rounded to a
value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Specification

If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report

A loop counter shall not have essentially floating type.

Examples

for Loop Counters
int main(void){
 unsigned int counter = 0u;

5 MISRA C 2012

5-216

 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){
 /* Non-compliant - counter = 1000 at the end of the loop */
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */
 foo = (float) count * 0.001f;
 }
}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used as
a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters
int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){
 foo += 0.001f; /* Non-compliant - foo used as a loop counter */
 }

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */

 MISRA C:2012 Rule 14.1

5-217

 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-218

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition

A for loop shall be well-formed.

Rationale

The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Specification

Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report
• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;

 MISRA C:2012 Rule 14.2

5-219

• all three expressions shall be empty for a deliberate infinite loop.
• 3rd expression should be an assignment of a loop counter.
• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Examples

Altering the Loop Counter Inside the Loop
void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */
 index = index + 3; /* Altering the loop counter */
 }
}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0
#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */
 if((index % 4) == 0){

5 MISRA C 2012

5-220

 flag = TRUE; /* allows early termination of loop */
 }
 }
}

for Loops With Empty Clauses

void foo(void)
 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;
 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}
 /* Compliant - Exception all three clauses can be empty */
}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule
14.4

 MISRA C:2012 Rule 14.2

5-221

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-222

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code
and Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations.

Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

 MISRA C:2012 Rule 14.3

5-223

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-224

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale
Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Specification
Polyspace does not flag integer constants, for example if(2).

If your configuration includes the option -boolean-types, the number of warnings can
increase or decrease.

Message in Report
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Examples

Controlling Expression in if, while, and for
#include <stdbool.h>
#include <stdlib.h>

 MISRA C:2012 Rule 14.4

5-225

#define TRUE = 1

typedef _Bool bool_t;
extern bool_t flag;

void foo(void){
 int *p = 1;
 int *q = 0;
 int i = 0;
 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */
}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single non-
Boolean variable. If you use a single variable as the controlling statement, it must be
essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-226

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.4

5-227

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition
The goto statement should not be used.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report
The goto statement should not be used.

Examples

Use of goto Statements
void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Non-compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

5 MISRA C 2012

5-228

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.1

5-229

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand. You can use a forward goto statement together with a backward one to
implement iterations. Restricting backward goto statements ensures that you use only
iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report

The goto statement shall jump to a label declared later in the same function.

Examples

Use of Backward goto Statements
void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Compliant */
 }

label2: {

5 MISRA C 2012

5-230

 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.2

5-231

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Examples

goto Statements Jump Inside Block
void f1(int a) {
 if(a <= 0) {
 goto L2; /* Non-compliant - L2 in different block*/
 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {

5 MISRA C 2012

5-232

 goto L1; /* Compliant - L1 in outer block*/
 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {
 L2:;
 }
}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block
void f2 (int x, int z) {
 int y = 0;

 switch(x) {
 case 0:
 if(x == y) {
 goto L1; /* Non-compliant - switch-clauses are treated as blocks */
 }
 break;
 case 1:
 y = x;
 L1: ++x;
 break;
 default:
 break;
 }

}

 MISRA C:2012 Rule 15.3

5-233

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.4 | MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-234

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition

There should be no more than one break or goto statement used to terminate any iteration
statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit point
from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report

There should be no more than one break or goto statement used to terminate any
iteration statement.

Examples

break Statements in Inner and Outer Loops
volatile int stop;

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Compliant */
 if(sum >= sat)
 break;

 MISRA C:2012 Rule 15.4

5-235

 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 break;
 sum += arr[j];
 }
 }
}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop
volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {
 int i;
 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 if(stop)
 goto L1;
 sum += arr[i];
 }

 L1: displayStopMessage();
}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

goto Statement in Inner Loop and break Statement in Outer Loop
volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {
 int i,j;

5 MISRA C 2012

5-236

 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 goto L1;
 sum += arr[i];
 }
 }

 L1: displayMessage();
}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.4

5-237

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report

A function should have a single point of exit at the end.

Examples

More Than One return Statement in Function
#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;

5 MISRA C 2012

5-238

bool_t f1(unsigned short n, char *p) { /* Non-compliant */
 if(n > MAX) {
 return false;
 }

 if(p == NULL) {
 return false;
 }

 return true;
}

In this example, the rule is violated because there are three return statements.

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;
bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */
 return_value = true;
 if(n > MAX) {
 return_value = false;
 }

 if(p == NULL) {
 return_value = false;
 }

 return return_value;
}

Check Information
Group: Control Flow
Category: Advisory

 MISRA C:2012 Rule 15.5

5-239

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 17.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-240

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound
statement

Description

Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report
• The else keyword shall be followed by either a compound statement, or another if

statement.
• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.

 MISRA C:2012 Rule 15.6

5-241

• The statement forming the body of a do ... while statement shall be a compound
statement.

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound

statement.

Examples

Iteration Block
int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements
void f1(void) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

One possible correction is to enclose each block associated with an if or else statement
in braces.

5 MISRA C 2012

5-242

void f1(void) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Spurious Semicolon After Iteration Statement
void f1(void) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a
block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 15.6

5-243

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-244

MISRA C:2012 Rule 15.7
All if … else if constructs shall be terminated with an else statement

Description

Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report

All if … else if constructs shall be terminated with an else statement.

Examples

Missing else Block
int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {

 MISRA C:2012 Rule 15.7

5-245

 /* Non-compliant */
 action_2();
 }
}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {
 /* Non-compliant */
 action_2();
 }
 else {
 /* No statement required */
 /* ; is optional */
 }

}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 16.5

5 MISRA C 2012

5-246

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.7

5-247

MISRA C:2012 Rule 16.1
All switch statements shall be well-formed

Description

Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Polyspace Specification

Following the MISRA specifications, the coding rules checker also raises a violation of
rule 16.1 if a switch statement violates one of these rules: 16.2, 16.3, 16.4, 16.5 or 16.6.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

5 MISRA C 2012

5-248

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule
16.3 | MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012
Rule 16.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.1

5-249

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements

5 MISRA C 2012

5-250

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.2

5-251

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls”
into the next statement. This next statement can be another switch-clause, or the end of
the switch. This behavior is sometimes intentional, but more often it is an error. If you
add additional cases later, an unterminated switch-clause can cause problems.

Polyspace Specification

Polyspace raises a warning for each noncompliant case clause.

Message in Report

An unconditional break statement shall terminate every switch-clause.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-252

See Also
MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.3

5-253

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report

Every switch statement shall have a default label.

Examples

Switch Statement Without default
short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 }

5 MISRA C 2012

5-254

 return xyz;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 default:
 errorflag = 1;
 break;
 }
 if (errorflag == 1)
 return errorflag;
 else
 return xyz;
}

Switch Statement for Enumerated Inputs
enum Colors{
 RED, GREEN, BLUE
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;

 MISRA C:2012 Rule 16.4

5-255

 break;
 case BLUE:
 next = RED;
 break;
 }
 return next;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{
 RED, GREEN, BLUE, ERROR
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Compliant */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 default:
 next = ERROR;
 break;
 }

 return next;
}

5 MISRA C 2012

5-256

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.4

5-257

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition

A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Message in Report

A default label shall appear as either the first or the last switch label of a switch
statement.

Examples

Default Case in switch Statements
void foo(int var){

 switch(var){
 default: /* Compliant - default is the first label */
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;

5 MISRA C 2012

5-258

 }

 switch(var){
 case 0:
 ++var;
 break;
 default: /* Non-compliant - default is mixed with the case labels */
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 default: /* Compliant - default is the last label */
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the last label */
 var = 0;
 break;
 }
}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be
the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements

 MISRA C:2012 Rule 16.5

5-259

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-260

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming
error.

Message in Report

Every switch statement shall have at least two switch-clauses.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 16.6

5-261

“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-262

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Specification

If your configuration uses the -boolean-types option, the number of reported
violations can increase.

Message in Report

A switch-expression shall not have essentially Boolean type.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 16.7

5-263

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-264

MISRA C:2012 Rule 17.1
The features of <starg.h> shall not be used

Description

Rule Definition
The features of <stdarg.h> shall not be used..

Rationale
The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard.
For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report
The features of <stdarg.h> shall not be used.

Examples

Use of va_start, va_list, va_arg, and va_end
#include<stdarg.h>
void f2(int n, ...) {

 MISRA C:2012 Rule 17.1

5-265

 int i;
 double val;
 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)
 {
 val = va_arg(vl, double); /* Non-compliant */
 }

 va_end(vl); /* Non-compliant */
}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>
void h(va_list ap) { /* Non-compliant */
 double y;

 y = va_arg(ap, double); /* Non-compliant */
}

void g(unsigned short n, ...) {
 unsigned int x;
 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */
 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {
 /* undefined - uint32_t:double type mismatch when g uses va_arg () */

5 MISRA C 2012

5-266

 g(1, 2.0, 3.0);
}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.1

5-267

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself directly
or indirectly several times, the available stack space can be exceeded, causing serious
failure. Unless the recursion is tightly controlled, it is difficult to determine the
maximum stack space required.

Message in Report

Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Examples

Direct and Indirect Recursion
void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */
}

void foo2(void) {
 foo1();
}

5 MISRA C 2012

5-268

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Polyspace Results
Number of Recursions | Number of Direct Recursions

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.2

5-269

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining it.
When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Message in Report

Function 'XX' has no complete visible prototype at call.

Examples

Function Not Declared Before Call
#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();

5 MISRA C 2012

5-270

 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 17.3

5-271

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-272

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description

Rule Definition

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report

Missing return value for non-void function 'XX'.

Examples

Missing Return Statement Along Certain Execution Paths
int absolute(int v) {
 if(v < 0) {
 return v;
 }
}

 MISRA C:2012 Rule 17.4

5-273

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

Return Statement Without Explicit Expression
#define SIZE 10
int table[SIZE];

unsigned short lookup(unsigned short v) {
 if((v < 0) || (v > SIZE)) {
 return;
 }
 return table[v];
}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-274

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements

Description

Rule Definition

The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

Rationale

If you use an array declarator for a function parameter instead of a pointer, the function
interface is clearer because you can state the minimum expected array size. If you do not
state a size, the expectation is that the function can handle an array of any size. In such
cases, the size value is typically another parameter of the function, or the array is
terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This
rule prevents you from passing an array of size smaller than the size you declared.

Message in Report

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

 MISRA C:2012 Rule 17.5

5-275

Examples

Incorrect Array Size Passed to Function
void func(int arr[4]);

int main() {
 int arrSmall[3] = {1,2,3};
 int arr[4] = {1,2,3,4};
 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */
 func(arr); /* Compliant */
 func(arrLarge); /* Compliant */

 return 0;
}

In this example, the rule is violated when arrSmall, which has size 3, is passed to func,
which expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90. C99

See Also
MISRA C:2012 Rule 17.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-276

Introduced in R2015b

 MISRA C:2012 Rule 17.5

5-277

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the
[]

Description

Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you can
inform a C99 compiler that the array contains a minimum number of elements. The
compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report

The declaration of an array parameter shall not contain the static keyword between the
[].

Examples

Use of static Keyword Within [] in Array Parameter
extern int arr1[20];
extern int arr2[10];

/* Non-compliant: static keyword used in array declarator */
unsigned int total (unsigned int n, unsigned int arr[static 20]) {
 unsigned int i;
 unsigned int sum = 0;

5 MISRA C 2012

5-278

 for (i=0U; i < n; i++) {
 sum+= arr[i];
 }

 return sum;
}

void func (void) {
 int res, res2;
 res = total (10U, arr1); /* Non-compliant - behavior not defined */
 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */
}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.6

5-279

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the
return value. Because the compiler allows the call, you might not catch the omission.
This rule forbids calls to a non-void function where the return value is not used. If you
do not intend to use the return value of a function, explicitly cast the return value to
void.

Message in Report

The value returned by a function having non-void return type shall be used.

Examples

Used and Unused Return Values
unsigned int cutOff(unsigned int val) {
 if (val > 10 && val < 100) {
 return val;
 }
 else {
 return 0;
 }
}

5 MISRA C 2012

5-280

unsigned int getVal(void);

void func2(void) {
 unsigned int val = getVal(), res;
 cutOff(val); /* Non-compliant */
 res = cutOff(val); /* Compliant */
 (void)cutOff(val); /* Compliant */
}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.7

5-281

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description

Rule Definition

A function parameter should not be modified.

Rationale

When you modify a parameter, the function argument corresponding to the parameter is
not modified. However, you or another programmer unfamiliar with C can expect by
mistake that the argument is also modified when you modify the parameter.

Message in Report

A function parameter should not be modified.

Examples

Function Parameter Modified
int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */
 param2 = input(); / Compliant */
}

In this example, the rule is violated when the parameter param1 is modified.

5 MISRA C 2012

5-282

The rule is not violated when the parameter is a pointer param2 and *param2 is
modified.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 17.8

5-283

MISRA C:2012 Rule 18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-
time derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Specification

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index

Message in Report

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

5 MISRA C 2012

5-284

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.1

5-285

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the
same array.

Rationale

This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Polyspace Specification

This rule is raised whenever the analysis detects a Subtraction or comparison
between pointers to different arrays.

Message in Report

Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

5 MISRA C 2012

5-286

Examples

Subtracting Pointers
#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between
compliant and noncompliant pointer subtractions. The diff1 and diff2 subtractions
are compliant because the pointers point to the same array. The diff3 subtraction is not
compliant because p1 and p2 point to different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 18.2

5-287

“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-288

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior.

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Examples

Pointer and Array Comparisons
void f1(void){
 int arr1[10];
 int arr2[10];
 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */

 MISRA C:2012 Rule 18.3

5-289

 if(ptr1 < arr1){} /* Compliant */
}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons
struct limits{
 int lower_bound;
 int upper_bound;
};

void func2(void){
 struct limits lim_1 = { 2, 5 };
 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *
 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */
}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure elements
within a structure. The first comparison compares the lower_bound of lim1 and the
upper_bound of lim2. This comparison is noncompliant because the
lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1

5 MISRA C 2012

5-290

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.3

5-291

MISRA C:2012 Rule 18.4
The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for
instance, sequentially accessing locations during a memory test).

Polyspace Specification

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report

The +, -, += and -= operators should not be applied to an expression of pointer type.

5 MISRA C 2012

5-292

Examples

Pointers and Array Expressions
void fun1(void){
 unsigned char arr[10];
 unsigned char *ptr;
 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */
 ptr = &arr[5]; /* Compliant */
 ptr = arr;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line
12).

Adding Array Elements Inside a for Loop
void fun2(void){
 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};
 unsigned char i = 0U;
 unsigned char j = 0U;
 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){
 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){
 sum += row[j]; /* Compliant */
 }
 }
}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

 MISRA C:2012 Rule 18.4

5-293

Pointers and Array Expressions
void fun3(unsigned char *ptr1, unsigned char ptr2[]){
 ptr1++; /* Compliant */
 ptr1 = ptr1 - 5; /* Non-compliant */
 ptr1 -= 5; /* Non-compliant */
 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */
 ptr2 = ptr2 + 3; /* Non-compliant */
 ptr2 += 3; /* Non-compliant */
 ptr2[3] = 0U; /* Compliant */
}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-294

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report

Declarations should contain no more than two levels of pointer nesting.

Examples

Pointer Nesting
typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */
{
 char ** obj2; /* Compliant */
 char *** obj3; /* Non-compliant */
 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 char ** arr[10]; /* Compliant */
 char ** (*parr)[10]; /* Compliant */
 char * (**pparr)[10]; /* Compliant */
}

 MISRA C:2012 Rule 18.5

5-295

struct s{
 char * s1; /* Compliant */
 char ** s2; /* Compliant */
 char *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */
char ** (**pfunc2)(void); /* Compliant */
char ** (***pfunc3)(void); /* Non-compliant */
char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-296

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Specification

Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Examples

Address of Local Variables
char *func(void){
 char local_auto;
 return &local_auto /* Non-compliant

 MISRA C:2012 Rule 18.6

5-297

 * &local_auto is indeterminate */
}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables
char *sp;

void f(unsigned short u){
 g(&u);
}

void g(unsigned short *p){
 sp = p; /* Non-compliant
 * the parameter u from f is copied to static sp */
}

void h(void){
 static unsigned short *q;

 unsigned short x =0u;
 q = &x; /* Non-compliant -
 * &x stored in object with greater lifetime */
}

In this example, the function g stores a copy of its pointer parameter p. If p always
points to an object with static storage duration, then the code is compliant with this rule.
However, in this example, p points to an object with automatic storage duration. In such
a case, copying the parameter p is noncompliant.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-298

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.6

5-299

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3 on page 5-340.

Message in Report

Flexible array members shall not be declared.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

5 MISRA C 2012

5-300

“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.7

5-301

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays can
make it impossible to determine statistically the amount of memory for the stack
requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of
the array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report

Variable-length array types shall not be used.

Check Information
Group: Pointers and Arrays
Category: Required

5 MISRA C 2012

5-302

AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.8

5-303

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description

Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report
• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Examples

Assignment of Unions
void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

5 MISRA C 2012

5-304

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant */
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments
#include <string.h>

int arr[10];

void func(void) {
 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */
 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */
 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */
}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken up
by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 19.1

5-305

Introduced in R2014b

5 MISRA C 2012

5-306

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is
unspecified.

• Otherwise, the value is implementation-dependant.

Message in Report

The union keyword should not be used.

Examples

Possible Problems with union Keyword
unsigned int zext(unsigned int s)
{
 union /* Non-compliant */
 {
 unsigned int ul;
 unsigned short us;

 MISRA C:2012 Rule 19.2

5-307

 } tmp;

 tmp.us = s;
 return tmp.ul; /* Unspecified value */
}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int field
tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-308

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the file.
Undefined behavior can occur if you use #include to include a standard header file
within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Specification

Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report

#include directives should only be preceded by preprocessor directives or comments.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 20.1

5-309

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-310

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Description

Rule Definition

The ', " or \ characters and the /* or // character sequences shall not occur in a header
file name.

Rationale

The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing
token.

• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Specification

Polyspace flags the characters ', ", \, /* or // between < and > in #include
<filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include
"filename".

Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

 MISRA C:2012 Rule 20.2

5-311

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-312

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition

The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following
forms:

• #include <filename>
• #include "filename"

Message in Report

• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 20.3

5-313

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-314

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition
A macro shall not be defined with the same name as a keyword.

Rationale
Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Examples

Redefining int keyword
#define int some_other_type
 /* Non-compliant - int keyword behavior altered */
#include <stdlib.h>
...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

One possible correction is to use a different keyword:

 MISRA C:2012 Rule 20.4

5-315

#define int_mine some_other_type
#include <stdlib.h>
...

Redefining keywords versus statements
#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/
#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/
#define compound(S) {S;} /* Compliant*/
...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards
#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline
is not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 21.1

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-316

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report

#undef shall not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.5

5-317

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description

Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Specification

Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report

Macro argument shall not look like a preprocessing directive.

Examples

Macro Expansion Causing Non-Compliance
#define M(A) printf (#A)

#include <stdio.h>

void foo(void){
 M(

5 MISRA C 2012

5-318

#ifdef SW /* Non-compliant */
 "Message 1"
#else
 "Message 2" /* Compliant - SW not defined */
#endif /* Non-compliant */
);
}

This example shows a macro definition and the macro usage. #ifdef SW and #endif
are noncompliant because they look like a preprocessing directive. Polyspace does not
flag #else "Message 2" because after macro expansion, Polyspace knows SW is not
defined. The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.6

5-319

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description

Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale

If you do not use parentheses, then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Examples

Macro Expressions
#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */

5 MISRA C 2012

5-320

 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to r =
(1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3
+ 4). However, without parentheses, the program does not know the intended
expression. Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This
macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.7

5-321

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

5 MISRA C 2012

5-322

“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.8

5-323

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value
might not meet developer expectations.

Message in Report

Identifier is not defined.

Examples

Macro Identifiers
#if M == 0 /* Non-compliant - Not defined */
#endif

#if defined (M) /* Compliant - M is not evaluate */
#if M == 0 /* Compliant - M is known to be defined */
#endif
#endif

#if defined (M) && (M == 0) /* Compliant

5 MISRA C 2012

5-324

 * if M defined, M evaluated in (M == 0) */
#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.9

5-325

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description

Rule Definition
The # and ## preprocessor operators should not be used.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to predict
the result of macro expansion.

The use of ## can result in obscured code.

Message in Report
The # and ## preprocessor operators should not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11

Topics
“Activate Coding Rules Checker”

5 MISRA C 2012

5-326

“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.10

5-327

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report
The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Examples

Use of # and ##
#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

5 MISRA C 2012

5-328

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.11

5-329

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition
A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators.

Rationale
The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is itself
subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report
Expanded macro parameter param1 is also an operand of op operator.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”

5 MISRA C 2012

5-330

“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.12

5-331

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You typically use a preprocessing directive to conditionally exclude source code until a
corresponding #else, #elif, or #endif directive is encountered. If your compiler does
not detect a preprocessing directive because it is malformed or invalid, you can end up
excluding more code than you intended.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report

Directive is not syntactically meaningful.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-332

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.13

5-333

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report

• ‘#else' not within a conditional.
• ‘#elsif' not within a conditional.
• ‘#endif' not within a conditional. unterminated conditional directive.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-334

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

5-335

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition
#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale
Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library (ISO/IEC 9899:1999,

Section 7, "Library")
• Macro names described in the C Standard Library as being defined in a standard

header (ISO/IEC 9899:1999, Section 7, "Library").

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Examples

Defining or Undefining Reserved Identifiers
#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */

5 MISRA C 2012

5-336

#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 20.4

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.1

5-337

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition

A reserved identifier or macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Specification

• If you define a macro name that corresponds to a standard library macro, object, or
function, rule 21.1 is violated.

• The rule considers tentative definitions as definitions.

Message in Report

Identifier 'XX' shall not be reused.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-338

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.2

5-339

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition
The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale
Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Specification
If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report
• The macro <name> shall not be used.
• Identifier XX should not be used.

Examples

Use of malloc, calloc, realloc and free
#include <stdlib.h>

5 MISRA C 2012

5-340

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 _S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 18.7

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 21.3

5-341

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-342

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Specification

If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.4

5-343

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-344

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Specification

If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.5

5-345

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-346

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Specification

If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.6

5-347

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-348

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition

The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.7

5-349

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-350

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition

The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Specification

In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.8

5-351

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-352

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.9

5-353

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-354

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 21.10

5-355

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-356

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Examples

Use of Function in tgmath.h
#include <tgmath.h>

float f1,res;

void func(void) {

 MISRA C:2012 Rule 21.11

5-357

 res = sqrt(f1); /* Non-compliant */
}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {
 res = sqrtf(f1);
}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-358

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description

Rule Definition

The exception handling features of <fenv.h> should not be used.

Rationale

In some cases, the values of the floating-point status flags are unspecified. Attempts to
access them can cause undefined behavior.

Message in Report

The exception handling features of <fenv.h> should not be used

Examples

Use of Features in <fenv.h>
#include <fenv.h>

void func(float x, float y) {
 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */
 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */
 }
 else {
#pragma STDC FENV_ACCESS ON

 MISRA C:2012 Rule 21.12

5-359

 z=x*y;
 if(z>x) {
#pragma STDC FENV_ACCESS OFF
 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */
 }
 }
 }
}

In this example, the rule is violated when the identifiers feclearexcept and
fetestexcept, and the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory
Language: C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-360

MISRA C:2012 Rule 21.13
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF

Description

Rule Definition
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Rationale
Functions in <ctype.h> have a well-defined behavior only for int arguments whose
value is within the range of unsigned char or the negative value equivalent of EOF.
The use of other values results in undefined behavior.

Polyspace Specification
Polyspace considers that the negative value equivalent of EOF is -1 and does not raise a
violation if you pass -1 as argument to a function in ctype.h.

Message in Report
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Examples

Invalid Arguments for Functions from <ctype.h>
bool_t f (uint8_t a)
{

 MISRA C:2012 Rule 21.13

5-361

 return (isdigit ((int32_t) a) /* Compliant */
 && isalpha ((int32_t) 'b') /* Compliant */
 && islower (EOF) /* Compliant */
 && isalpha (256)); /* Non-compliant */
}

In this example, the rule is violated when 256, which is an neither an unsigned char
or the value EOF, is passed as an input argument to the isalpha function.

Note The int casts in the above example are required to comply with Rule 10.3 on page
5-150.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-362

MISRA C:2012 Rule 21.14
The Standard Library function memcmp shall not be used to compare null terminated
strings

Description

Rule Definition
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Rationale
If memcmp is used to compare two strings and the length of either string is less than the
number of bytes compared, the strings can appear different even when they are logically
the same. The characters after the null terminator are compared even though they do not
form part of the string.

For instance:
memcmp(string1, string2, sizeof(string1))

can compare bytes after the null terminator if string1 is longer than string2.

Message in Report
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Examples

Using memcmp for String Comparison
extern char buffer1[12];
extern char buffer2[12];

 MISRA C:2012 Rule 21.14

5-363

void f1 (void)
{
 (void) strcpy (buffer1, "abc");
 (void) strcpy (buffer2, "abc");
 if (memcmp (buffer1, buffer2, sizeof (buffer1)) != 0)
 {
 /* Non-compliant */
 }
}

In this example, the comparison in the if statement is noncompliant. The strings stored
in buffer1 and buffer2 can be reported different, but this difference comes from
uninitialized characters after the null terminators.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.15 | MISRA C:2012 Rule 21.16

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-364

MISRA C:2012 Rule 21.15
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types

Description

Rule Definition

The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

Rationale

The functions

memcpy(arg1, arg2, num_bytes);
memmove(arg1, arg2, num_bytes);
memcmp(arg1, arg2, num_bytes);

perform a byte-by-byte copy, move or comparison between the memory locations that
arg1 and arg2 point to. A byte-by-byte copy, move or comparison is meaningful only if
arg1 and arg2 have compatible types.

Using pointers to different data types for arg1 and arg2 typically indicates a coding
error.

Message in Report

The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

 MISRA C:2012 Rule 21.15

5-365

Examples

Incompatible Argument Types for memcpy
void f (uint8_t s1[8], uint16_t s2[8])
{
 (void) memcpy (s1, s2, 8); /* Non-compliant */
}

In this example, s1 and s2 are pointers to different data types. The memcpy statement
copies eight bytes from one buffer to another.

Eight bytes represent the entire span of the buffer that s1 points to, but only part of the
buffer that s2 points to. Therefore, the memcpy statement copies only part of s2 to s1,
which might be unintended.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.16

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-366

MISRA C:2012 Rule 21.16
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Description

Rule Definition

The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Rationale

The Standard Library function

memcmp (lhs, rhs, num);

performs a byte-by-byte comparison of the first num bytes of the two objects that lhs and
rhs point to.

Do not use memcmp for a byte-by-byte comparison of the following.
Type Rationale
Structures If members of a structure have different data types, your compiler

introduces additional padding for data alignment in memory. The
content of these extra padding bytes is meaningless. If you perform a
byte-by-byte comparison of structures with memcmp, you compare even
the meaningless data stored in the padding. You might reach the false
conclusion that two data structures are not equal, even if their
corresponding members have the same value.

 MISRA C:2012 Rule 21.16

5-367

Type Rationale
Objects with
essentially
floating type

The same floating point value can be stored using different
representations. If you perform a byte-by-byte comparison of two
variables with memcmp, you can reach the false conclusion that the
variables are unequal even when they have the same value. The reason
is that the values are stored using two different representations.

Essentially char
arrays

Essentially char arrays are typically used to store strings. In strings,
the content in bytes after the null terminator is meaningless. If you
perform a byte-by-byte comparison of two strings with memcmp, you
might reach the false conclusion that two strings are not equal, even if
the bytes before the null terminator store the same value.

Message in Report
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Examples

Using memcmp for Comparison of Structures, Unions, and essentially
char Arrays
struct S;
bool_t f1 (struct S *s1, struct S *s2)
{
 return (memcmp (s1, s2, sizeof (struct S)) != 0); /* Non-compliant */
}

union U
{
uint32_t range;
uint32_t height;
};
bool_t f2 (union U *u1, union U *u2)
{
 return (memcmp (u1, u2, sizeof (union U)) != 0); /* Non-compliant */
}

5 MISRA C 2012

5-368

const char a[6] = "task";
bool_t f3 (const char b[6])
{
 return (memcmp (a, b, 6) != 0); /* Non-compliant */
}

In this example:

• Structures s1 and s2 are compared in the bool_t f1 function. The return value of
this function might indicate that s1 and s2 are different due to padding. This
comparison is noncompliant.

• Unions u1 and u2 are compared in the bool_t f2 function. The return value of this
function might indicate that u1 and u2 are the same due to unintentional comparison
of u1.range and u2.height, or u1.height and u2.range. This comparison is
noncompliant.

• Essentially char arrays a and b are compared in the bool_t f3 function. The return
value of this function might incorrectly indicate that the strings are different because
the length of a (four) is less than the number of bytes compared (six). This comparison
is noncompliant.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.15

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 21.16

5-369

Introduced in R2017a

5 MISRA C 2012

5-370

MISRA C:2012 Rule 21.17
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters

Description

Rule Definition

Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Rationale

Incorrect use of a string handling function might result in a read or write access beyond
the bounds of the function arguments, resulting in undefined behavior.

Message in Report

Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Examples

Pointer Access Out of Bounds from strcpy Usage
char string[] = "Short";
void f1 (const char *str)
{
 (void) strcpy (string, "Too long to fit"); /* Non-compliant */
 if (strlen (str) < (sizeof (string) - 1u))
 {
 (void) strcpy (string, str); /* Compliant */
 }
}

 MISRA C:2012 Rule 21.17

5-371

size_t f2 (void)
{
 char text[5] = "Token";
 return strlen (text); /* Non-compliant */
}

In this example:

• The first use of strcpy is noncompliant because it attempts to write beyond the end
of its destination argument string.

• The second use of strcpy is compliant because it attempts to write to the destination
argument string only if the source argument str fits.

• The use of strlen is noncompliant. strlen computes the length of a string up to the
null terminator. The character array text has no null terminator.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.18

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-372

MISRA C:2012 Rule 21.18
The size_t argument passed to any function in <string.h> shall have an appropriate
value

Description

Rule Definition

The size_t argument passed to any function in <string.h> shall have an appropriate
value.

Rationale

The value must be positive and not greater than the size of the smallest object passed by
pointer to the function. For instance, suppose you use the strncmp function to compare
two strings lhs_string and rhs_string as follows:

strncmp (lhs_string, rhs_string, num)

The third argument num must be positive and must not be greater than the size of
lhs_string or rhs_string, whichever is smaller.

Otherwise, using the function can result in read or write access beyond the bounds of the
function argument.

Message in Report

The size_t argument passed to any function in <string.h> shall have an appropriate
value.

 MISRA C:2012 Rule 21.18

5-373

Examples

Incorrect size_t Argument for memcmp
char buf1[5] = "12345";
char buf2[10] = "1234567890";

void f (void)
{
 if (memcmp (buf1, buf2, 5) == 0)
 {
 /* Compliant */
 }
 if (memcmp (buf1, buf2, 6) == 0)
 {
 /* Non-compliant */
 }
}

In this example, the first if statement is compliant. The size_t argument is five, which
is same as the size of the smaller string, buf1.

By the same reasoning, the second if statement is noncompliant.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.17

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”

5 MISRA C 2012

5-374

“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.18

5-375

MISRA C:2012 Rule 21.19
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type

Description

Rule Definition

The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

Rationale

The C99 Standard states that if the program modifies the structure pointed to by the
value returned by localeconv, or the strings returned by getenv, setlocale or
strerro, undefined behavior occurs. Treating the pointers returned by the various
functions as if they were const-qualified allows an analysis tool to detect any attempt to
modify an object through one of the pointers. Assigning the return values of the functions
to const-qualified pointers results in the compiler issuing a diagnostic if an attempt is
made to modify an object.

Message in Report

The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

5 MISRA C 2012

5-376

Examples

Returning Pointers fromsetlocale and localeconv
void f1 (void)
{
 char *s1 = setlocale (LC_ALL, 0); /* Non-compliant */
 struct lconv *conv = localeconv (); /* Non-compliant */
 s1[1] = 'A'; /* Undefined behavior */
 conv->decimal_point = "^"; /* Undefined behavior */
}

void f2 (void)
{
 char str[128];
 (void) strcpy (str, setlocale (LC_ALL,0)); /* Compliant */
 const struct lconv *conv = localeconv (); /* Compliant */
 conv->decimanl_point = "^" /* Constraint violation */
}

void f3 (void)
{
const struct lconv *conv = localeconv (); /* Compliant */
conv->grouping[2] = 'x'; /* Non-compliant */
}

In the above example:

• The usage of setlocale and localeconv in the function f1 are non-compliant as
the returned pointers are assigned to non-const—qualified pointers.

Note The usage of setlocale and localeconv above are not constraint violations
and will therefore not be reported by a compiler. However, an analysis tool will be
able to report a violation.

• The usage of setlocale in the function f2 is compliant as strcpy takes a const
char * as its second parameter. The usage of localeconv in the function f2 is
compliant as the returned pointers are assigned to a const-qualified pointer. Any
attempt to modify an object through a pointer will be reported by a compiler or
analysis tool as this is a constraint violation.

 MISRA C:2012 Rule 21.19

5-377

• The usage of a const-qualified pointer in the function f3 gives compile time
protection of the value returned by localeconv but the same is not true for the
strings it references. Modification of these strings can be detected by an analysis tool.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 7.4 | MISRA C:2012 Rule 11.8 | MISRA C:2012 Rule 21.8

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-378

MISRA C:2012 Rule 21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function

Description

Rule Definition

The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Rationale

The preceding functions return a pointer to an object within the Standard Library.
Implementation for this object can use a static buffer that can be modified by a second
call to the same function. Therefore the value accessed through a pointer before a
subsequent call to the same function can change unexpectedly.

Message in Report

The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Examples

Use of Return Value from getenv After Another Call to getenv
void f1(void)
{
 const char *res1;

 MISRA C:2012 Rule 21.20

5-379

 const char *res2;
 char copy[128];
 res1 = setlocale (LC_ALL, 0);
 (void) strcpy (copy, res1);
 res2 = setlocale (LC_MONETARY, "French");
 printf ("%s\n", res1); /* Non-compliant */
 printf ("%s\n", copy); /* Compliant */
 printf ("%s\n", res2); /* Compliant */
}

In this example:

• The first printf statement is non-compliant because the pointer returned by
setlocale is used following a subsequent call to it when res2 is assigned.

• The second printf statement is compliant because the copy operation performed by
strcpy is made before a subsequent call to setlocale function is made.

• The third printf statement is compliant because there is no subsequent call to the
setlocale function is made before use.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-380

MISRA C:2012 Rule 22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Description

Rule Definition

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Rationale

Resources are something that you must return to the system once you have used them.
Examples include dynamically allocated memory and file descriptors.

If you do not release resources explicitly as soon as possible, then a failure can occur due
to exhaustion of resources.

Message in Report

All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Examples

Dynamic Memory
#include<stdlib.h>

void performOperation(int);

int func1(int num) {

 MISRA C:2012 Rule 22.1

5-381

 int *arr1 = (int*) malloc(num * sizeof(int));

 return 0;
} /* Non-compliant - memory allocated to arr1 is not released */

int func2(int num) {
 int *arr2 = (int*) malloc(num * sizeof(int));

 free(arr2);
 return 0;
} /* Compliant - memory allocated to arr2 is released */

In this example, the rule is violated when memory dynamically allocated using the
malloc function is not freed using the free function before the end of scope.

File Pointers
#include <stdio.h>
void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w"); /* Non-compliant */
 fprintf (fp1, "!");
 fclose (fp1);
}

void func2(void) {
 FILE *fp2;
 fp2 = fopen ("data1.txt", "w");
 fprintf (fp2, "*");
 fclose(fp2);

 fp2 = fopen ("data2.txt", "w"); /* Compliant */
 fprintf (fp2, "!");
 fclose (fp2);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt. Therefore, the rule 22.1 is violated.

5 MISRA C 2012

5-382

The rule is not violated in func2 because file data1.txt is closed and the file pointer
fp2 is explicitly dissociated from data1.txt before it is reused.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3 | MISRA C:2012
Rule 21.6 | Resource leak

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.1

5-383

MISRA C:2012 Rule 22.2
A block of memory shall only be freed if it was allocated by means of a Standard Library
function

Description

Rule Definition

A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Rationale

The Standard Library functions that allocate memory are malloc, calloc and
realloc.

You free a block of memory when you pass its address to the free or realloc function.
The following causes undefined behavior:

• You free a block of memory that you did not allocate.
• You free a block of memory that have already freed before.

Message in Report

A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Examples

Memory Not Allocated Is Freed
#include <stdlib.h>

5 MISRA C 2012

5-384

void func1(void) {
 int x=0;
 int *ptr=&x;

 free(ptr);
 /* Non-compliant: ptr is not dynamically allocated */
}

In this example, the rule is violated because the free function operates on a pointer that
does not point to dynamically allocated memory.

Memory Freed Twice
#include <stdlib.h>

void func(int arrSize) {
 int *ptr = (int*) malloc(arrSize* sizeof(int));

 free(ptr); /* Block of memory freed once */
 free(ptr); /* Non-compliant - Block of memory freed twice */
}

In this example, the rule is violated when the free function operates on ptr twice
without a reallocation in between.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Deallocation of previously deallocated pointer | Invalid free of
pointer | MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

 MISRA C:2012 Rule 22.2

5-385

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-386

MISRA C:2012 Rule 22.3
The same file shall not be open for read and write access at the same time on different
streams

Description

Rule Definition

The same file shall not be open for read and write access at the same time on different
streams.

Rationale

If a file is both written and read via different streams, the behavior can be undefined.

Message in Report

The same file shall not be open for read and write access at the same time on different
streams.

Examples

Opening File That Is Open in Another Stream
#include <stdio.h>

void func(void) {
 FILE *fw = fopen("tmp.txt", "r+");
 FILE *fr = fopen("tmp.txt", "r"); /* Non-compliant: File open in stream fw*/
}

In this example, the rule is violated when the same file tmp.txt is opened in two
streams. The FILE pointers fw and fr point to two different streams here.

 MISRA C:2012 Rule 22.3

5-387

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C

See Also
MISRA C:2012 Rule 21.6 | Resource leak

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-388

MISRA C:2012 Rule 22.4
There shall be no attempt to write to a stream which has been opened as read-only

Description

Rule Definition
There shall be no attempt to write to a stream which has been opened as read-only.

Rationale
The Standard does not specify the behavior if an attempt is made to write to a read-only
stream.

Message in Report
There shall be no attempt to write to a stream which has been opened as read-only.

Examples

Writing to File Opened as Read-Only
#include <stdio.h>

void func1(void) {
 FILE *fp1 = fopen("tmp.txt", "r");
 (void) fprintf(fp1, "Some text"); /* Non-compliant: Read-only stream */
 (void) fclose(fp1);
}

void func2(void) {
 FILE *fp2 = fopen("tmp.txt", "r+");
 (void) fprintf(fp2, "Some text"); /* Compliant */
 (void) fclose(fp2);
}

 MISRA C:2012 Rule 22.4

5-389

In this example, the file stream associated with fp1 is opened as read-only. The rule is
violated when the stream is written.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6 | Writing to read-only resource

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-390

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description

Rule Definition

A pointer to a FILE object shall not be dereferenced.

Rationale

The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Message in Report

A pointer to a FILE object shall not be dereferenced

Examples

FILE* Pointer Dereferenced
#include <stdio.h>

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */

 MISRA C:2012 Rule 22.5

5-391

 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-392

MISRA C:2012 Rule 22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Description

Rule Definition

The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Rationale

The Standard states that the value of a FILE* pointer is indeterminate after you close
the stream associated with it.

Message in Report

The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Examples

Use of FILE Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);

 MISRA C:2012 Rule 22.6

5-393

 fprintf(fp,"text");
 }
}

In this example, the stream associated with the FILE* pointer fp is closed with the
fclose function. The rule is violated FILE* pointer fp is used before the stream is re-
opened.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.6 | Use of
previously closed resource

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-394

MISRA C:2012 Rule 22.7
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF

Description

Rule Definition

The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Rationale

The EOF value may become indistinguishable from a valid character code if the value
returned is converted to another type. In such cases, testing the converted value against
EOF will not reliably identify if the end of the file has been reached or if an error has
occurred.

Message in Report

The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Examples

Possibly Misleading Results from Comparison with EOF
void f1 (void)
{
 char ch;
 ch = (char) getchar ();
 if (EOF != (int32_t) ch) /* Non-compliant */
 {

 MISRA C:2012 Rule 22.7

5-395

 }
}

void f2 (void)
{
 char ch;
 ch = (char) getchar ();
 if (!feof (stdin)) /* Compliant */
 {
 }
}

void f3 (void)
{
 int32_t i_ch;
 i_ch = getchar ();
 if (EOF != i_ch) /* Compliant */
 {
 char ch;
 ch = (char) i_ch;
 }
}

In this example:

• The test in the f1 function is non-compliant. It will not be reliable as the return value
is cast to a narrower type before checking for EOF.

• The test in the f2 function is compliant. It shows how feof() can be used to check
for EOF when the return value from getchar() has been subjected to type
conversion.

• The test in the f3 function is compliant. It is reliable as the unconverted return value
is used when checking for EOF.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-396

See Also

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.7

5-397

MISRA C:2012 Rule 22.8
The value of errno shall be set to zero prior to a call to an errno-setting-function

Description

Rule Definition

The value of errno shall be set to zero prior to a call to an errno-setting-function.

Rationale

If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

If you do not explicitly set errno to zero before a function call, it can contain values from
a previous call. Checking errno for nonzero values after the function call can give the
false impression that an error occurred.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report

The value of errno shall be set to zero prior to a call to an errno-setting-function.

5 MISRA C 2012

5-398

Examples

errno Not Reset Before Use
#include <stdlib.h>
#include <errno.h>

double val = 0.0;

void f (void)
{
 val = strtod("1.0",NULL); /* Non-compliant */
 if (0 == errno) /* Check errno for nonzero values */
 {
 val = strtod("1.0",NULL); /* Compliant - case 1*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
 else
 {
 errno = 0;
 val = strtod("1.0",NULL); /* Compliant - case 2*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
}

In this example, the rule is violated when strtod is called but errno is not reset prior to
the call.

The rule is not violated in the following cases:

• Case 1: errno is compared against zero and then strtod is called in the if(0 ==
errno) branch.

• Case 2: errno is explicitly set to zero and then strtod is called.

Check Information
Group: Resources

 MISRA C:2012 Rule 22.8

5-399

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 22.9 | MISRA C:2012 Rule 22.10

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-400

MISRA C:2012 Rule 22.9
The value of errno shall be tested against zero after calling an errno-setting function

Description

Rule Definition
The value of errno shall be tested against zero after calling an errno-setting function.

Rationale
If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

When errno is nonzero, the function return value is not likely to be correct. Before using
this return value, you must test errno for nonzero values.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report
The value of errno shall be tested against zero after calling an errno-setting function.

Examples

errno Not Tested After Function Call
#include <stdlib.h>
#include <errno.h>

 MISRA C:2012 Rule 22.9

5-401

void func(void);
double val = 0.0;

void f1 (void)
{
 errno = 0;
 val = strtod ("1.0", NULL); /* Non-compliant */
 func ();

 if (0 != errno)
 {
 }

 errno = 0;
 val = strtod ("1.0", NULL); /* Compliant */
 if (0 == errno)
 {
 func();
 }
}

In this example, the rule is violated when errno is not checked immediately after the
first call to strtod. Instead, a second function func is called. func might use the value
in the global variable val. The value can be incorrect if an error has occurred during the
call to strtod.

The rule is not violated when errno is checked before operations that potentially use the
return value of strtod.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.10

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”

5 MISRA C 2012

5-402

“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.9

5-403

MISRA C:2012 Rule 22.10
The value of errno shall only be tested when the last function to be called was an
errno-setting function

Description

Rule Definition
The value of errno shall only be tested when the last function to be called was an errno-
setting function.

Rationale
Besides the errno-setting functions, the Standard does not enforce that other functions
set errno on errors. Whether these functions set errno or not is implementation-
dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent. On implementations that do not require errno setting, even
if you check errno alone, you can overlook error conditions.

For a list of errno-setting functions, see MISRA C:2012 Rule 22.8.

Message in Report
The value of errno shall only be tested when the last function to be called was an
errno-setting function.

Examples

Incorrect Test of errno
void f (void)
{

5 MISRA C 2012

5-404

 float64_t f64;
 errno = 0;
 f64 = atof ("A.12");
 if (0 == errno) /* Non-compliant */
 {
 }
 errno = 0;
 f64 = strtod ("A.12", NULL);
 if (0 == errno) /* Compliant */
 {
 }
}

In this example:

• The first if statement is noncompliant because atof may or may not set errno when
an error is detected. f64 may not have a valid value within this if statement.

• The second if statement is compliant because strtod is an errno-setting function.
f64 will have a valid value within this if statement.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.9

Topics
“Activate Coding Rules Checker”
“Review Coding Rule Violations”
“Polyspace MISRA C:2012 Checker”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.10

5-405

Custom Coding Rules

6

Group 1: Files
Number Rule Applied Message generated if rule

is violated
Other details

1.1 All source file names
must follow the specified
pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. A source file is
a file that is not
included.

1.2 All source folder names
must follow the specified
pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. A source file is
a file that is not
included.

1.3 All include file names
must follow the specified
pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. An include file
is a file that is included.

1.4 All include folder names
must follow the specified
pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. An include file
is a file that is included.

6 Custom Coding Rules

6-2

Group 2: Preprocessing
Number Rule Applied Message generated if rule

is violated
Other details

2.1 All macros must follow
the specified pattern.

The macro “macro_name”
does not match the
specified pattern.

Macro names are
checked before
preprocessing.

2.2 All macro parameters
must follow the specified
pattern.

The macro parameter
“param_name” does not
match the specified
pattern.

Macro parameters are
checked before
preprocessing.

 Group 2: Preprocessing

6-3

Group 3: Type definitions
Number Rule Applied Message generated if rule

is violated
Other details

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer types
specified by typedef
statements. Does not
apply to enumeration
types. For example:
typedef signed int
int32_t;

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For
example: typedef
float f32_t;

3.3 All pointer types must
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer types
specified by typedef
statements. For
example: typedef
int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array types
specified by typedef
statements. For
example: typedef
int[3] a_int_3;

3.5 All function pointer
types must follow the
specified pattern.

The function pointer type
“type_name” does not
match the specified
pattern.

Applies to function
pointer types specified
by typedef statements.
For example: typedef
void (*pf_callback)
(int);

6 Custom Coding Rules

6-4

Group 4: Structures
Number Rule Applied Message generated if rule

is violated
Other details

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct types must
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

4.3 All struct fields must
follow the specified
pattern.

The struct field
“field_name” does not
match the specified
pattern.

4.4 All struct bit fields
must follow the specified
pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

 Group 4: Structures

6-5

Group 5: Classes (C++)
Number Rule Applied Message generated if rule

is violated
Other details

5.1 All class names must
follow the specified
pattern.

The class tag “tag_name”
does not match the
specified pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members must
follow the specified
pattern.

The data member
“member_name” does not
match the specified
pattern.

5.4 All function members
must follow the specified
pattern.

The function member
“member_name” does not
match the specified
pattern.

5.5 All static data members
must follow the specified
pattern.

The static data member
“member_name” does not
match the specified
pattern.

5.6 All static function
members must follow
the specified pattern.

The static function
member “member_name”
does not match the
specified pattern.

5.7 All bitfield members
must follow the specified
pattern.

The bitfield
“member_name” does not
match the specified
pattern.

6 Custom Coding Rules

6-6

Group 6: Enumerations
Number Rule Applied Message generated if rule

is violated
Other details

6.1 All enumeration tags
must follow the specified
pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration types
must follow the specified
pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

6.3 All enumeration
constants must follow
the specified pattern.

The enumeration
constant
“constant_name” does not
match the specified
pattern.

 Group 6: Enumerations

6-7

Group 7: Functions
Number Rule Applied Message generated if rule

is violated
Other details

7.1 All global functions
must follow the specified
pattern.

The global function
“function_name” does not
match the specified
pattern.

A global function is a
function with external
linkage.

7.2 All static functions must
follow the specified
pattern.

The static function
“function_name” does not
match the specified
pattern.

A static function is a
function with internal
linkage.

7.3 All function parameters
must follow the specified
pattern.

The function parameter
“param_name” does not
match the specified
pattern.

In C++, applies to non-
member functions.

6 Custom Coding Rules

6-8

Group 8: Constants
Number Rule Applied Message generated if rule

is violated
Other details

8.1 All global constants
must follow the specified
pattern.

The global constant
“constant_name” does not
match the specified
pattern.

A global constant is a
constant with external
linkage.

8.2 All static constants must
follow the specified
pattern.

The static constant
“constant_name” does not
match the specified
pattern.

A static constant is a
constant with internal
linkage.

8.3 All local constants must
follow the specified
pattern.

The local constant
“constant_name” does not
match the specified
pattern.

A local constant is a
constant without
linkage.

8.4 All static local constants
must follow the specified
pattern.

The static local constant
“constant_name” does not
match the specified
pattern.

A static local constant is
a constant declared
static in a function.

 Group 8: Constants

6-9

Group 9: Variables
Number Rule Applied Message generated if rule

is violated
Other details

9.1 All global variables
must follow the specified
pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables must
follow the specified
pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables must
follow the specified
pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is a
variable without
linkage.

9.4 All static local variables
must follow the specified
pattern.

The static local variable
“var_name” does not
match the specified
pattern.

A static local variable is
a variable declared
static in a function.

6 Custom Coding Rules

6-10

Group 10: Name spaces (C++)
Number Rule Applied Message generated if rule

is violated
Other details

10.1 All names paces must
follow the specified
pattern.

The name space “name
space_name” does not
match the specified
pattern.

 Group 10: Name spaces (C++)

6-11

Group 11: Class templates (C++)
Number Rule Applied Message generated if rule

is violated
Other details

11.1 All class templates must
follow the specified
pattern.

The class template
“template_name” does
not match the specified
pattern.

11.2 All class template
parameters must follow
the specified pattern.

The class template
parameter
“param_name” does not
match the specified
pattern.

6 Custom Coding Rules

6-12

Group 12: Function templates (C++)
Number Rule Applied Message generated if rule

is violated
Other details

12.1 All function templates
must follow the specified
pattern.

The function template
“template_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.2 All function template
parameters must follow
the specified pattern.

The function template
parameter
“param_name” does not
match the specified
pattern.

Applies to non-member
functions.

12.3 All function template
members must follow
the specified pattern.

The function template
member “member_name”
does not match the
specified pattern.

 Group 12: Function templates (C++)

6-13

Code Metrics

7

Comment Density
Ratio of number of comments to number of statements

Description
The metric specifies the ratio of comments to statements expressed as a percentage.

Multi-line comments are counted as one comment. A statement typically ends with a
semi-colon with some exceptions. Exceptions include semi-colons in for loops or
structure field declarations.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Comment Density Calculation
struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

struct record dataBase[100];

struct record fetch(void);
void remove(int);

void maintenanceRoutines() {
// This function implements
// regular maintenance on an internal database
 int i;
 struct record tempRecord;

7 Code Metrics

7-2

 for(i=0; i <100; i++) {
 tempRecord = fetch(); // This function fetches a record
 // from the database
 if(tempRecord.isEmployed == 0)
 remove(i); // Remove employee record
 //from the database
 }
}

In this example, the comment density is 38. The calculation is done as follows:
Code Running Total

of Comments
Running
Total of
Statements

struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

0 1

struct record dataBase[100];
struct record fetch(void);
void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements
// regular maintenance on an internal database

1 4

int i;
struct record tempRecord;

1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This
 function fetches a record
 // from the database

2 7

if(tempRecord.isEmployed == 0)
 remove(i);
 // Remove employee record
 //from the database
 }
}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

 Comment Density

7-3

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

7 Code Metrics

7-4

Cyclomatic Complexity
Number of linearly independent paths in function body

Description
This metric calculates the number of decision points in a function and adds one to the
total. A decision point is a statement that causes your program to branch into two paths.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to limit
the value of this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Computation Details

The metric calculation uses the following rules to identify decision points:

• An if statement is one decision point.
• The statements for and while count as one decision point, even when no condition is

evaluated, for example, in infinite loops.
• Boolean combinations (&&, ||) do not count as decision points.
• case statements do not count as decision points unless they are followed by a break

statement. For instance, this code has a cyclomatic complexity of two:

switch(num) {
 case 0:
 case 1:
 case 2:
 break;
 case 3:
 case 4:
 }

• The calculation is done after preprocessing:

 Cyclomatic Complexity

7-5

• Macros are expanded.
• Conditional compilation is applied. The blocks hidden by preprocessing directives

are ignored.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag;
 if (x <= 0)
 /* Decision point 1*/
 flag = 1;
 else
 {
 if (x < y)
 /* Decision point 2*/
 flag = 1;
 else if (x==y)
 /* Decision point 3*/
 flag = 0;
 else
 flag = -1;
 }
 return flag;
}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator
int foo (int x, int y) {
 if((x <0) ||(y < 0))
 /* Decision point 1*/
 return 0;
 else
 return (x > y ? x: y);
 /* Decision point 2*/
}

7 Code Metrics

7-6

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement
#include <stdio.h>

int foo(int x,int y, int ch)
{
 int val = 0;
 switch(ch) {
 case 1:
 /* Decision point 1*/
 val = x + y;
 break;
 case 2:
 /* Decision point 2*/
 val = x - y;
 break;
 default:
 printf("Invalid choice.");
 }
 return val;
}

In this example, the cyclomatic complexity of foo is 3.

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Decision point 1*/
 count = 1;
 else
 while(x>y) {
 /* Decision point 2*/
 x--;
 if(count< bound) {
 /* Decision point 3*/
 count++;
 }

 Cyclomatic Complexity

7-7

 }
 return count;
}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

7 Code Metrics

7-8

Higher Estimate of Local Variable Size
Total size of all local variables in function

Description
This metric provides a conservative estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. For instance, compilers store the address to which the execution
returns following the function call. When computing this metric, Polyspace does not
consider these optimizations.

• Your compiler uses additional memory during a function call. When computing this
metric, Polyspace does not consider this hidden memory usage.

• (C++ only) Destructors and try-catch statements can introduce hidden contributions
to the metric value.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

 Higher Estimate of Local Variable Size

7-9

Examples

All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming 4 bytes for int, the higher estimate of local variable size is 28.
The breakup of the size is shown in this table.
Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

(4+4)+4=12

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
sum of the two branches is
12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types
char func(char param) {
 int var_1;

7 Code Metrics

7-10

 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int and eight bytes for
double and four bytes for alignment, the higher estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you
specify the alignment through your target processor. For more information, see the
Alignment column in Target processor type (-target). The breakup of the size is
shown in this table.
Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9

 Higher Estimate of Local Variable Size

7-11

Variable Size (in Bytes) Running Total
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3 has
eight bytes. The storage
must start from a memory
address at a multiple of the
alignment, four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of
its size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

7 Code Metrics

7-12

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Eight bytes.

The size comes from the this pointer and a hidden contribution from an internal
variable.

• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 40 bytes. When
func2() calls func1(), a temporary object of the class MyClass is created. The object
has ten int variables, each with a size of four bytes.

 Higher Estimate of Local Variable Size

7-13

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Local Variable Size | Calculate code metrics (-code-
metrics)

Introduced in R2016b

7 Code Metrics

7-14

Language Scope
Language scope

Description
This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.
• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The recommended upper limit for this metric is 4. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Language Scope Calculation
int f(int i)
{
 if (i == 1)
 return i;
 else
 return i * g(i-1);
}

In this example:

 Language Scope

7-15

• N1 = 17.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

7 Code Metrics

7-16

Lower Estimate of Local Variable Size
Total size of local variables in function taking nested scopes into account

Description
This metric provides an optimistic estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

The software computes the total variable size in each scope and uses whichever total
is greatest. For instance, if a conditional statement has variable definitions, the
software computes the total variable size in each branch, and then uses whichever
total is greatest. If a nested scope itself has further nested scopes, the same process is
repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some
compilers reuse stack space for variables defined in separate scopes. This metric
provides a more accurate estimate of stack usage for such compilers. Otherwise, use
the metric Higher Estimate of Local Variable Size. This metric adds the
size of all local variables, whether or not they are defined in nested scopes.

 Lower Estimate of Local Variable Size

7-17

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When computing this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory during a function call. For instance, compilers
store the address to which the execution returns following the function call. When
computing this metric, Polyspace does not consider this hidden memory usage.

• (C++ only) Destructors and try-catch statements can introduce hidden contributions
to the metric value.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

Examples

All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming four bytes for int, the lower estimate of local variable size is
24. The breakup of the metric is shown in this table.

7 Code Metrics

7-18

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

max(4+4,4)= 8

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types
char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int, eight bytes for double
and four bytes for alignment, the lower estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you
specify the alignment through your target processor. For more information, see the
Alignment column in Target processor type (-target). The breakup of the size is
shown in this table.
Variable Size (in Bytes) Running Total
Return value 1 1

 Lower Estimate of Local Variable Size

7-19

Variable Size (in Bytes) Running Total
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3
requires eight bytes. The
storage must start from a
memory address at a
multiple of the alignment,
four bytes.

12

var_3 8 20

7 Code Metrics

7-20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of
its size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Eight bytes.

The size comes from the this pointer and a hidden contribution from an internal
variable.

 Lower Estimate of Local Variable Size

7-21

• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 40 bytes. When
func2() calls func1(), a temporary object of the class MyClass is created. The object
has ten int variables, each with a size of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Calculate code metrics (-
code-metrics)

Introduced in R2016b

7 Code Metrics

7-22

Estimated Function Coupling
Measure of complexity between levels of call tree

Description
This metric provides an approximate measure of complexity between different levels of
the call tree. The metric is defined as:

number of call occurrences – number of function definitions + 1

If there are more function definitions than function calls, the estimated function coupling
result is negative.

This metric:

• Counts function calls and function definitions in the current file only.

It does not count function definitions in a header file included in the current file.
• Treats static and inline functions like any other function.

Examples

Same Function Called Multiple Times
void checkBounds(int *);
int getUnboundedValue();

int getBoundedValue(void) {
 int num = getUnboundedValue();
 checkBounds(&num);
 return num;
}

void main() {
 int input1=getBoundedValue(), input2= getBoundedValue(), prod;
 prod = input1 * input2;

 Estimated Function Coupling

7-23

 checkBounds(&prod);
}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

Negative Estimated Function Coupling
int foobar(int a, int b){
 return a+b;
}

int bar(int b){
 return b+2;
}

int foo(int a){
 return a<<2;
}

int main(int x){
 foobar(x,x+2);
 return 0;
}

This example shows how you can get a negative estimated function coupling result. In
this example, you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File

7 Code Metrics

7-24

Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences | Calculate code metrics (-code-metrics)

 Estimated Function Coupling

7-25

Number of Call Levels
Maximum depth of nesting of control flow structures

Description
This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function without control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag = 0;
 if (x <= 0)
 /* Call level 1*/
 flag = 1;
 else
 {
 if (x <= y)
 /* Call level 2*/
 flag = 1;
 else
 flag = -1;
 }
 return flag;
}

In this example, the number of call levels of foo is 2.

7 Code Metrics

7-26

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Call level 1*/
 count = 1;
 else
 while(x>y) {
 /* Call level 2*/
 x--;
 if(count< bound) {
 /* Call level 3*/
 count++;
 }
 }
 return count;
}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Call Levels

7-27

Number of Call Occurrences
Number of calls in function body

Description
This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop
#include<stdio.h>

void fillArraySize10(int *arr) {
 for(int i=0; i<10; i++)
 arr[i]=getVal();
}

int getVal(void) {
 int val;
 printf("Enter a value:");

7 Code Metrics

7-28

 scanf("%d", &val);
 return val;
}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

 Number of Call Occurrences

7-29

Number of Called Functions
Number of callees of a function

Description
This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted. For C++ templates, the first instantiation of the template is
used to calculate this metric.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function
#include <stdio.h>

7 Code Metrics

7-30

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions | Calculate
code metrics (-code-metrics)

 Number of Called Functions

7-31

Number of Calling Functions
Number of distinct callers of a function

Description
This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated. For C++ templates, the first instantiation of the template is used to
calculate this metric.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Calling a Function Multiple Times
#include <stdio.h>

int getVal() {
 int myVal;
 printf("Enter a value:");
 scanf("%d", &myVal);
 return myVal;
}

int func() {
 int val=getVal();
 if(val<0)
 return 0;
 else
 return val;
}

7 Code Metrics

7-32

int func2() {
 int val=getVal();
 while(val<0)
 val=getVal();
 return val;
}

In this example, the number of calling functions for getVal is 2. The calling functions
are func and func2.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of calling functions for fibonacci is 2. The calling
functions are main and fibonacci itself.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

 Number of Calling Functions

7-33

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

7 Code Metrics

7-34

Number of Direct Recursions
Number of instances of a function calling itself directly

Description
This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect
recursions do not occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

Examples

Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of direct recursions is 1.

 Number of Direct Recursions

7-35

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

7 Code Metrics

7-36

Number of Executable Lines
Number of executable lines in function body

Description
This metric measures the number of executable lines in a function body. When
calculating the value of this metric, Polyspace excludes declarations without static
initializers, comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

 Number of Executable Lines

7-37

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions | Calculate code
metrics (-code-metrics)

7 Code Metrics

7-38

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files | Calculate code metrics (-code-metrics)

 Number of Files

7-39

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Fixed Arguments
int initializeArray(int* arr, int size) {
}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments
int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {
}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments
double average (int num, ...)
{

7 Code Metrics

7-40

 va_list arg;
 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)
 {
 sum += va_arg (arg, double);
 }
 va_end (arg);

 return sum / num;
}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Function Parameters

7-41

Number of Goto Statements
Number of goto statements

Description
This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with goto Statements
#define SIZE 10
int initialize(int **arr, int loc);
void printString(char *);
void printErrorMessage(void);
void printExecutionMessage(void);

int main()
{
 int *arrayOfStrings[SIZE],len[SIZE],i;
 for (i = 0; i < SIZE; i++)
 {
 len[i] = initialize(arrayOfStrings,i);
 }

 for (i = 0; i < SIZE; i++)
 {
 if(len[i] == 0)

7 Code Metrics

7-42

 goto emptyString;
 else
 goto nonEmptyString;
 loop: printExecutionMessage();
 }

emptyString:
 printErrorMessage();
 goto loop;
nonEmptyString:
 printString(arrayOfStrings[i]);
 goto loop;
}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Goto Statements

7-43

Number of Header Files
Number of included header files

Description
This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted.

The metric gives a slightly higher number than the actual number of header files that
you use because Polyspace® internal header files and header files included by those files
are also counted. For the same reason, the metric can vary slightly even if you do not
explicitly include new header files or remove inclusion of header files from your code. For
instance, the number of Polyspace® internal header files can vary if you change your
analysis options.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files | Calculate code metrics (-code-metrics)

7 Code Metrics

7-44

Number of Instructions
Number of instructions per function

Description
This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Computation Details

The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction only if the variable is also initialized.
• Control flow statements such as if, for, break, goto, return, switch, while, do-

while count as one instruction.
• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{
 var = 1;
}

• Labels

For instance, the following counts as two instructions. The case labels do not
count as instructions.

 Number of Instructions

7-45

switch (1) { // Instruction 1: switch
 case 0:
 case 1:
 case 2:
 default:
 break; // Instruction 2: break
 }

Examples

Calculation of Number of Instructions
int func(int* arr, int size) {
 int i, countPos=0, countNeg=0, countZero = 0;
 for(i=0; i<size; i++) {
 if(arr[i] >0)
 countPos++;
 else if(arr[i] ==0)
 countZero++;
 else
 countNeg++;
 }
}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0
2 countNeg=0
3 countZero=0
4 for(i=0;i<size;i++) { ... }
5 if(arr[i] >=0)
6 countPos++
7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++
9 countNeg++

7 Code Metrics

7-46

Note This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

for(i=0;
 i<size;
 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Instructions

7-47

Number of Lines
Total number of lines in a file

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

See Also
Number of Lines Without Comment | Calculate code metrics (-code-
metrics)

7 Code Metrics

7-48

Number of Lines Within Body
Number of lines in function body

Description
This metric calculates the number of lines in function body. When calculating the value
of this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

 Number of Lines Within Body

7-49

In this example, the number of executable lines of getSign is 13. The calculation
includes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines | Calculate code metrics (-code-metrics)

7 Code Metrics

7-50

Number of Lines Without Comment
Number of lines of code excluding comments

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

See Also
Number of Lines | Calculate code metrics (-code-metrics)

 Number of Lines Without Comment

7-51

Number of Local Non-Static Variables
Total number of local variables in function

Description
This metric provides the number of local variables in a function.

The metric excludes static variables. To find number of static variables, use the metric
Number of Local Static Variables.

Examples

Non-Structured Variables
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, the number of local non-static variables in func is 5. The number does
not include the function arguments and return value.

Arrays and Structured Variables
typedef struct myStruct{
 char arr1[50];
 char arr2[50];
 int val;

7 Code Metrics

7-52

} myStruct;

void func(void) {
 myStruct var;
 char localArr[50];
}

In this example, the number of local non-static variables in func is 2: the structured
variable var and the array localArr.

Variables in Class Methods
class Rectangle {
 int width, height;
 public:
 void set (int,int);
 int area (void);
} rect;

int Rectangle::area (void) {
 int temp;
 temp = width * height;
 return(temp);
}

In this example, the number of local non-static variables in Rectangle::area is 1: the
variable temp.

Metric Information
Group: Function
Acronym: LOCAL_VARS
HIS Metric: No

See Also
Number of Local Static Variables | Higher Estimate of Local Variable
Size | Lower Estimate of Local Variable Size | Calculate code metrics
(-code-metrics)

 Number of Local Non-Static Variables

7-53

Introduced in R2017a

7 Code Metrics

7-54

Number of Local Static Variables
Total number of local static variables in function

Description
This metric provides the number of local static variables in a function.

Examples

Number of Static Variables
void func(void) {
 static int var_1 = 0;
 int var_2;
}

In this example, the number of static variables in func is 1. For examples of different
types of variables, see Number of Local Non-Static Variables.

Metric Information
Group: Function
Acronym: LOCAL_STATIC_VARS
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Number of Local Non-Static
Variables | Calculate code metrics (-code-metrics)

Introduced in R2017a

 Number of Local Static Variables

7-55

Number of Paths
Estimated static path count

Description
This metric measures the number of paths in a function.

If goto statements are present in your code, Polyspace cannot calculate the number of
paths. The software displays a metric value of -1.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is difficult to read and can cause more orange checks. Try to limit the value of this
metric.

To enforce limits on metrics, see “Review Code Metrics”.

Computation Details

The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is
one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• The number of paths for a control flow statement is calculated as follows:

• if-else if-else: The number of paths is the sum of paths calculated in the if
block, each else if block, and the concluding else block. When the concluding
else block is omitted, the path count is increased by 1.

For instance, the statement if(..) {} else if(..) {} else {} counts as
three paths. The statement if() {} counts as two paths, one for the if block and
one for the omitted else block.

• switch-case: Every case with break statement adds one to the path count. The
default statement counts as one path, even if it is omitted.

7 Code Metrics

7-56

For instance, the statement switch (var) { case 1: .. break; case
2: .. break; default: .. } counts as three paths.

• for, while, and do-while: The number of paths is equal to the number of paths
in the loop body + 1.

For instance, the statement while(0) {;} counts as two paths.
• If more than one control flow statement are present in a sequence, the number of

paths is the product of the path count for each control flow statement.

For instance, if a function has three for loops and two if-else statements, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can be
large. Nested control flow statements reduce the number of paths at the cost of
increasing the depth of nesting. For an example, see “Function with Nested Control
Flow Statements” on page 7-58.

Examples

Function with One Path
void func(int ch) {
 switch (ch)
 {
 case 1:
 case 2:
 case 3:
 case 4:
 default:
 }
}

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths
void func(int ch) {
 switch (ch)
 {

 Number of Paths

7-57

 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 default:
 }
}

In this example, func has five paths. Apart from the path that goes through the cases
and default, each break causes the creation of a new path.

Function with Nested Control Flow Statements
void func()
{
 int i = 0, j = 0, k = 0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 if (i < 2)
 ;
 else
 {
 if (i > 5)
 ;
 else
 ;
 }
 }
 }
 }
}

In this example, func has six paths. The number is calculated as follows:

• The innermost if-else block counts as two paths.

7 Code Metrics

7-58

• The outer if-else block counts as three paths, one path for the if block and the
previous two paths for the else block.

• The innermost for loop counts as four paths, one path for the loop and the previous
three paths for the if-else blocks.

• The next two outer loops add one path each.

Therefore, the number of paths in func is six.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Paths

7-59

Number of Return Statements
Number of return statements in a function

Description
This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present,
when reading the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Return Points
int getSign (int arg) {
 if(arg <0)
 return -1;
 else if(arg > 0)
 return 1;
 return 0;
}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

7 Code Metrics

7-60

Topics
“Review Code Metrics” (Polyspace Code Prover)
“Compare Metrics Against Software Quality Objectives” (Polyspace Code Prover)

 Number of Return Statements

7-61

Number of Recursions
Number of call graph cycles over one or more functions

Description
This metric specifies the number of recursions in your project. Even if more than one
function is involved in one recursive cycle, the number of recursions is counted as one.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of recursions is 1.

7 Code Metrics

7-62

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle
volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is 1. Although two functions operation1 and
operation2 indirectly call themselves, they are involved in the same call graph cycle
operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Indirect Recursion with Two Call Graph Cycles
volatile int signal;

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation2();
 else if(stop==2)
 operation3();
}

void operation2() {

 Number of Recursions

7-63

 operation1();
}

void operation3() {
 operation3();
}

void main() {
 operation1();
}

In this example, the number of recursions is 2.

There are two call graph cycles:

• operation1 → operation2 → operation1
• operation1 → operation3 → operation1

Same Function Called in Direct and Indirect Recursion
volatile int signal;

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation1();
 else if(stop==2)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of call graph cycles is 1.

If the same function calls itself both directly and indirectly, the two cycles are counted as
1.

7 Code Metrics

7-64

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

 Number of Recursions

7-65

Polyspace Report Components —
Alphabetical List

8

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full
forms. Aronyms are used for Polyspace Code Prover checks and Polyspace result status.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each
function call in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Report Template”

 Call Hierarchy

8-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such
as number of lines.

Properties

Include Verification Time Information

If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details

If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. The metrics
appear broken down by file and function.

Properties

Project Metrics
If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics
If you select this option, the report contains the following metrics about each file in the
project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics
If you select this option, the report contains the following metrics about each function in
the project:

 Code Metrics Details

8-5

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements
• Number of instructions
• Number of calling functions

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-6

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics
are the same as those displayed under Code Metrics Details. However, the file and
function metrics are not broken down by individual files and functions. Instead, the table
provides the minimum and maximum value of a file metric over all files and a function
metric over all functions.

See Also

Topics
“Customize Existing Report Template”

 Code Metrics Summary

8-7

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties

Include Checks from Polyspace Standard Library Stub Functions

Unless you deselect this option, the tables contain Polyspace Code Prover checks that
appear in Polyspace stubs for the standard library functions.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-8

Coding Rules Details
Create table of coding rule violations broken down by file

Description
This component creates tables containing coding rule violations broken down by each file
in the Polyspace project. For each rule violation, the table contains the following
information:

• Rule number
• Rule description
• Function containing the violation
• Line and column number
• Review information such as classification, status and comments

Properties

Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by

Using this option, you can break down the display of coding rule violations by file.

 Coding Rules Details

8-9

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-10

Coding Rules Summary
Create table with number of coding rule violations

Description
This component creates a table containing the number of coding rule violations. You can
choose whether to break this information down by rule number or file.

Properties

Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected

If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by

Using this option, you can break down the display of coding rule violations by:

 Coding Rules Summary

8-11

• Rule number
• File

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-12

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The
table lists command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The
table lists only the modifiable assumptions. For assumptions that you cannot change,
see the Polyspace documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The
table lists the rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors,
these files are listed.

See Also

Topics
“Customize Existing Report Template”

 Configuration Parameters

8-13

Defects Summary
Create table of Polyspace Bug Finder defects

Description
This component creates a table of Polyspace Bug Finder defects. From this table, you can
see the number of defects of each type.

Properties

Include Checkers with No Defects Detected

If you select this option, the table includes all defect types that Polyspace Bug Finder can
detect, including those that do not occur in your code.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-14

Global Variable Checks
Create table of Polyspace Code Prover global variables

Description
This component creates a table of Polyspace Code Prover global variables. From this
table, you can see the number of global variables of each type.

See Also

Topics
“Customize Existing Report Template”

 Global Variable Checks

8-15

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code.
For each recursive function, the table lists its immediate caller.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-16

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report
templates. To apply global filters, place this component immediately below the node
representing the report name.

Properties

Code Metrics Filters

The properties in table below apply to the inclusion of code metrics in your report.
Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your
Polyspace project.

Select the check box to
include project metrics.

Project metrics to
include

Specify project metrics to
include or exclude from
report.

Enter a regular MATLAB
expression.

Include File Metrics Choose whether to include
per file metrics in report.

Select the check box to
include per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a regular MATLAB
expression.

File metrics to include Specify file metrics to
include or exclude from
report.

Enter a regular MATLAB
expression.

 Report Customization (Filtering)

8-17

Property Purpose User Action
Include Function Metrics Choose whether to include

per function metrics in
report.

Select the check box to
include per function
metrics.

Function Metrics > Files
to include

Specify files to include or
exclude when reporting
function metrics.

Enter a regular MATLAB
expression.

Functions to include Specify functions to include
or exclude when reporting
function metrics.

Enter a regular MATLAB
expression.

Function metrics to
include

Specify function metrics to
include or exclude from
report.

Enter a regular MATLAB
expression.

Coding Rules Filters

The properties in table below apply to the inclusion of coding rule violations in your
report.
Property Purpose User Action
Files to include Specify files to include or

exclude when reporting
coding rule violations.

Enter a regular MATLAB
expression.

Coding rule numbers to
include

Specify coding rules to
include or exclude when
reporting coding rule
violations.

Enter a regular MATLAB
expression.

Classifications to include Specify classifications to
include or exclude when
reporting coding rule
violations.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude when reporting
coding rule violations.

Enter a regular MATLAB
expression.

8 Polyspace Report Components — Alphabetical List

8-18

Run-time Check Filters

The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.
Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks in
your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.
Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

 Report Customization (Filtering)

8-19

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

See Also

Topics
“Customize Existing Report Template”
“Regular Expressions” (MATLAB)

8 Polyspace Report Components — Alphabetical List

8-20

Run-time Checks Details Ordered by Color/File
Create overrides for global filters in Polyspace reports

Description
This component adds detailed information about the run-time checks to your report. This
component can also be used to override global filters in specific chapters of your report.
Use the following workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report
Customization (Filtering) component. For more information, see Report
Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks
Details Ordered by Color/File component. Select the Override Global Report
filter box.

Properties

Categories To Include

The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.
Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks in
your report. Orange checks indicate
possible run-time errors.

 Run-time Checks Details Ordered by Color/File

8-21

Property Purpose
Green Checks Specify whether to include green checks in

your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.
Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

8 Polyspace Report Components — Alphabetical List

8-22

See Also

Topics
“Customize Existing Report Template”

 Run-time Checks Details Ordered by Color/File

8-23

Run-time Checks Details Ordered by Review
Information
Create table with Polyspace Code Prover checks ordered by review information

Description
This component creates tables displaying the Polyspace Code Prover checks in your code.
All checks with same combination of Severity and Status appear in the same table.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-24

Run-time Checks Summary Ordered by File
Create table with Polyspace Code Prover checks ordered by file

Description
This component creates a table displaying the number of Polyspace Code Prover checks
per file in your code.

Properties

Sort the data

Use this option to sort the rows in the table alphabetically by filename or by percentage
of unproven code.

Display as

Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file

Select this option to display the number of checks of a certain color as a ratio of total
number of checks in the file.

Include checks from Polyspace standard library stub functions

Select this option to include the checks from Polyspace standard library stub functions in
your display.

 Run-time Checks Summary Ordered by File

8-25

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-26

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description
This component creates a table containing coding rule violations in results downloaded
from Polyspace Metrics.

See Also

Topics
“Customize Existing Report Template”

 Software Quality Objectives - Coding Rules Summary

8-27

Software Quality Objectives - Run-time Checks
Details
Create table of run-time check distribution in results downloaded from Polyspace Metrics

Description
This component creates tables showing run-time checks in results downloaded from
Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary
shows the distribution of run-time checks. This component shows individual instances of
run-time checks. Each file has a dedicated table showing the run-time checks in the file.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-28

Software Quality Objectives - Run-time Checks
Summary
Create table of run-time check distribution in results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results
downloaded from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software
Quality Objectives - Run-time Checks Details shows the individual instances
of run-time checks.

See Also

Topics
“Customize Existing Report Template”

 Software Quality Objectives - Run-time Checks Summary

8-29

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-30

Variable Access
Create table showing global variable access in source code

Description
This component creates a table showing the global variable access in your source code.
For each global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are
denoted by < and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Report Template”

 Variable Access

8-31

Variable Checks Details Ordered By Review
Information
Create table with Polyspace Code Prover global variable results ordered by review
information

Description
This component creates tables displaying the Polyspace Code Prover global variable
results in your code. All checks with same combination of Severity and Status appear in
the same table.

See Also

Topics
“Customize Existing Report Template”

8 Polyspace Report Components — Alphabetical List

8-32

Configuration Parameters

• “Product mode” on page 9-2
• “Settings from (C)” on page 9-3
• “Settings from (C++)” on page 9-5
• “Use custom project file” on page 9-7
• “Project configuration” on page 9-8
• “Enable additional file list” on page 9-9
• “Stub lookup tables” on page 9-10
• “Input” on page 9-12
• “Tunable parameters” on page 9-13
• “Output” on page 9-14
• “Model reference verification depth” on page 9-15
• “Model by model verification” on page 9-17
• “Output folder” on page 9-18
• “Make output folder name unique by adding a suffix” on page 9-19
• “Add results to current Simulink project” on page 9-20
• “Open results automatically after verification” on page 9-21
• “Check configuration before verification” on page 9-22
• “Verify all occurrences” on page 9-23

9

Product mode
Select type of Polyspace code analysis to run.

Model Configuration Parameters Category: Polyspace

Settings

Default: Code Prover

Code Prover
Run a Polyspace Code Prover verification.

Bug Finder
Run a Polyspace Bug Finder analysis.

Dependency

You see only the products for which you have a license. If you do not have a Polyspace
Code Prover license, the default product mode is Bug Finder.

Command-Line Information

Use the pslinkoptions property VerificationMode.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Analysis for Embedded Coder”

9 Configuration Parameters

9-2

Settings from (C)
Select settings for the analysis configuration. You can quickly activate coding rules
checking for generated C code

Model Configuration Parameters Category: Polyspace

Settings

Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 9-8
or “Use custom project file” on page 9-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA
AC-AGC obligatory and recommended rules.

Project configuration and MISRA C 2004 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2004 rules.

Project configuration and MISRA C 2012 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2012 rules. This option automatically applies the rule categories for
generated code. See Use generated code requirements (-misra3-agc-
mode).

MISRA AC AGC checking
Check compliance with the MISRA AC-AGC obligatory and recommended rules.
After rules checking, Polyspace stops.

MISRA C 2004 checking
Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace
stops.

 Settings from (C)

9-3

MISRA C 2012 checking
Check compliance with all MISRA C 2012 rules. This option automatically applies
the rule categories for generated code. See Use generated code requirements
(-misra3-agc-mode). After rules checking, Polyspace stops.

Dependency

This setting overrides custom configuration settings in “Project configuration” on page 9-
8 and “Use custom project file” on page 9-7. If you want to use your custom coding
rule settings, select the Project configuration option.

Command-Line Information

Use the pslinkoptions property VerificationSettings.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Specify Type of Analysis to Perform”

9 Configuration Parameters

9-4

Settings from (C++)
Select settings for the analysis configuration. This option allows you to quickly activate
coding rules checking for generated C++ code.

Model Configuration Parameters Category: Polyspace

Settings

Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 9-8
or “Use custom project file” on page 9-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA
C++ required rules.

Project configuration and JSF C++ checking
Run Polyspace with the options specified in the Project configuration plus JSF C+
+ shall rules.

MISRA C++ checking
Check compliance with the MISRA C++: 2008 required rules. After rules checking,
Polyspace stops.

JSF C++ checking
Check compliance with the JSF C++ shall rules. After rules checking, Polyspace
stops.

Dependency

This setting overrides custom configuration settings in “Project configuration” on page 9-
8 and “Use custom project file” on page 9-7. If you want to use your custom coding
rule settings, select the Project configuration option.

 Settings from (C++)

9-5

Command-Line Information

Use the pslinkoptions property CxxVerificationSettings.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Specify Type of Analysis to Perform”

9 Configuration Parameters

9-6

Use custom project file
Set Polyspace configuration options with a custom .psprj file

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Analysis uses configuration options from Project configuration on page 9-8
parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency

The Settings from parameter overrides custom configuration settings for coding rules.
If you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information

Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile. For
details, see pslinkoptionspslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Configure Advanced Polyspace Analysis Options”

 Use custom project file

9-7

Project configuration
Set advanced configuration options to customize the analysis.

Settings

Open the Polyspace Configuration window by using the Configure button. Customize
additional settings in this window and save your project configuration. If you added a
custom project file in the parameter “Use custom project file” on page 9-7, that project file
configuration is shown. Otherwise, the default project template is used.

For details about the advanced options, see “Analysis Options”.

Dependency

The Settings from parameter overrides custom configuration settings for coding rules.
If you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information

Use polyspace.ModelLinkBugFinderOptions with the pslinkoptions properties
EnablePrjConfigFile and PrjConfigFile.

See Also
polyspace.ModelLinkBugFinderOptions | pslinkoptions | pslinkoptions

Related Examples
• “Configure Advanced Polyspace Analysis Options”

More About
• “Analysis Options”

9 Configuration Parameters

9-8

Enable additional file list
Add additional supporting code files to the analysis.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select
files button to specify these additional files.

Command-Line Information

Use the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Include Handwritten Code”

 Enable additional file list

9-9

Stub lookup tables
Specify that the verification must stub auto-generated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range
allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Model Configuration Parameters Category: Polyspace

Settings

Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses information provided by the code generation
product. For instance, if you use Embedded Coder to generate code, the lookup table
functions with linear interpolation and no extrapolation follow specific naming
conventions.

9 Configuration Parameters

9-10

Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies only to autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, the option does not cause them to be
stubbed.

• The option is on by default. For certification purposes, if you want your verification
tool to be independent of the code generation tool, turn off the option.

Command-Line Information

Use the pslinkoptions property AutoStubLUT.

See Also
pslinkoptions | pslinkoptions

 See Also

9-11

Input
Choose whether to constrain input block variables.

Model Configuration Parameters Category: Polyspace

Settings

Default: Use specified minimum and maximum values

Use specified minimum and maximum values
Analysis assumes minimum and maximum values for input variables. These values
are specified in the input block dialog box. Use this value to reduce the number of
false positive results.

Unbounded inputs
Analysis assumes full range for input variables. Use this value to run a robust
analysis that includes values outside the expected range.

Command-Line Information

Use the pslinkoptions property InputRangeMode.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Specify Signal Ranges”

9 Configuration Parameters

9-12

Tunable parameters
Choose how to treat tunable parameter values during the analysis. Treat values as either
constants or a range of values.

Model Configuration Parameters Category: Polyspace

Settings

Default: Use calibration data

Use calibration data
Analysis assumes constant values for tunable parameters. Use this value to run a
contextual analysis. This option can reduce the number of false positive results.

Use specified minimum and maximum values
Analysis assumes a range of values for the tunable parameter variables. Specify
maximum and minimum values in the model. Use this option to run a robust
analysis that includes values outside the expected parameter value.

Command-Line Information

Use the pslinkoptions property ParamRangeMode.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Specify Signal Ranges”

 Tunable parameters

9-13

Output
Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Model Configuration Parameters Category: Polyspace

Settings

Default: No verification

No verification
Polyspace does not verify output values.

Verify outputs are within minimum and maximum values
Polyspace checks to see if the output variable values are within the expected
minimum and maximum values. Specify the minimum and maximum values in the
output block dialog boxes.

Command-Line Information

Use the pslinkoptions property OutputRangeMode.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Specify Signal Ranges”

9 Configuration Parameters

9-14

Model reference verification depth
Only for models that use Embedded Coder generated code. Indicate how deep into the
model hierarchy to analyze.

Model Configuration Parameters Category: Polyspace

Settings

Default: Current model only

Current model only
Polyspace analyzes only the current model

1
Polyspace analyzes the current model and the referenced models that are one level
below the current model.

2
Polyspace analyzes the current model and the referenced models that are up to two
levels below the current model.

3
Polyspace analyzes the current model and the referenced models that are up to three
levels below the current model.

All
Polyspace analyzes the current model and all referenced models.

Command-Line Information

Use the pslinkoptions property ModelRefVerifDepth.

See Also
pslinkoptions | pslinkoptions

 Model reference verification depth

9-15

Related Examples
• “Configure Analysis Depth for Referenced Models”

9 Configuration Parameters

9-16

Model by model verification
Only for models that use Embedded Coder generated code. Analyze each model or
referenced model individually. If you have a large project, this option can help
modularize your analysis .

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This
option does not analyze model interactions.

Command-Line Information

Use the pslinkoptions property ModelRefByModelRefVerif.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Configure Analysis Depth for Referenced Models”

 Model by model verification

9-17

Output folder
Specify the location and folder name for your analysis results.

Model Configuration Parameters Category: Polyspace

Settings

Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is
relative to your current MATLAB folder.

If you select “Add results to current Simulink project” on page 9-20, the results folder is
relative to the Simulink project folder.

By default, the software stores your results in Current Folder
\results_model_name.

Command-Line Information

Use the pslinkoptions property ResultDir.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Manage Results”

9 Configuration Parameters

9-18

Make output folder name unique by adding a suffix
Add a unique suffix to the results folder for every run to avoid overwriting previous
results.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder
by appending a unique number to the folder name.

Command-Line Information

Use the pslinkoptions property AddSuffixToResultDir.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Manage Results”

 Make output folder name unique by adding a suffix

9-19

Add results to current Simulink project
Add your Polyspace results to the current Simulink project. To use this option, you must
have a Simulink project open.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies

You must have a Simulink project open to use this option.

Command-Line Information

Use the pslinkoptions property AddToSimulinkProject.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Manage Results”

9 Configuration Parameters

9-20

Open results automatically after verification
Decide whether to open your results in the Polyspace interface after running analysis
from Simulink.

Model Configuration Parameters Category: Polyspace

Settings

Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information

Use the pslinkoptions property OpenProjectManager.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Manage Results”

 Open results automatically after verification

9-21

Check configuration before verification
Check whether model and code configurations are optimal for code analysis.

Model Configuration Parameters Category: Polyspace

Settings

Default: On (proceed with warnings)

On (proceed with warnings)
The process stops for errors, but continues the code analysis if the configuration has
only warnings.

On (stop for warnings)
If the configuration has errors or warnings, the process stops.

Off
The software does not check the configuration.

Command-Line Information

Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see
pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Check Simulink Model Settings”

9 Configuration Parameters

9-22

Verify all occurrences
For S-Function analyses only. Run an analysis on all instances of the selected S-
Function.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information
from the selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included
in the model multiple times, information from all occurrences is included in the
analysis.

Command-Line Information

Use the pslinkoptions property VerifALLSFcnInstances.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Verify S-Function Code”

 Verify all occurrences

9-23

Approximations Used During Bug Finder
Analysis

10

Inputs in Polyspace Bug Finder
A Bug Finder analysis does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of
unbounded inputs when your source code is incomplete. For example, in the following
code Bug Finder detects a division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

Note To set bounds on your input, add constraints in your code such as assert or if.

See Also
“Global Variables in Polyspace Bug Finder” on page 10-3 | “Bug Finder Analysis
Assumptions”

10 Approximations Used During Bug Finder Analysis

10-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the
initialization of global variables. These assumptions depend on how you declare and
define global variables. For example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo.
Bug Finder follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another
function calls foo and sets gvar=0. Otherwise, when your source files are incomplete
and do not contain a main function, Bug Finder makes no assumption about the
initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due
to the const keyword.

See Also
“Inputs in Polyspace Bug Finder” on page 10-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

10-3

